[1] 贾子强, 方 广, 牛晨晨, 等. 玻璃材料对我国碳中和目标实现的贡献浅析[J]. 硅酸盐通报, 2022, 41(2): 367-375. JIA Z Q, FANG G, NIU C C, et al. Contributions of glass materials to China carbon neutrality[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 367-375 (in Chinese). [2] 罗上庚. 放射性废物处理与处置[M]. 北京: 中国环境科学出版社, 2007. LUO S G. Treatment and disposal of radioactive waste[M]. Beijing: China Environmental Press, 2007 (in Chinese). [3] 徐 凯. 核工业可持久发展的基石: 核废料科学管理与处置[J]. 中国材料进展, 2015, 34(2): 173. XU K. Cornerstone of sustainable development of nuclear industry: scientific management and disposal of nuclear waste[J]. Materials China, 2015, 34(2): 173 (in Chinese). [4] OJOVAN M I, LEE W E. An introduction to nuclear waste immobilisation[M]. Amsterdam: Elsevier, 2005. [5] 王 驹. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术, 2019, 53(10): 2072-2082. WANG J. Progress of geological disposal of high-level radioactive waste in China in the 21st century[J]. Atomic Energy Science and Technology, 2019, 53(10): 2072-2082 (in Chinese). [6] BIRKHOLZER J, HOUSEWORTH J, TSANG C F. Geologic disposal of high-level radioactive waste: status, key issues, and trends[J]. Annual Review of Environment and Resources, 2012, 37: 79-106. [7] DONALD I W. Waste immobilization in glass and ceramic based hosts[M]. Hoboken: John Wiley & Sons, 2010. [8] ROTH G, WEISENBURGER S. Vitrification of high-level liquid waste: glass chemistry, process chemistry and process technology[J]. Nuclear Engineering and Design, 2000, 202(2): 197-207. [9] CAURANT D, LOISEAU P, MAJÉRUS O, et al. Glasses, glass-ceramics and ceramics for immobilization of highly radiocative nuclear wastes[M]. Hauppauge: Nova Science, 2007. [10] 徐 凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, 35(7): 481-488. XU K. Review of international research progress on nuclear waste vitrification[J]. Materials China, 2016, 35(7): 481-488 (in Chinese). [11] 王孝强. 高硫高钠高放废液的玻璃固化配方研究[D]. 成都: 成都理工大学, 2013. WANG X Q. Glass formulation development on high-sodium and high-sulfur bearing high level liquid waste for vitrification process[D]. Chengdu: Chengdu University of Technology, 2013 (in Chinese). [12] RAJ K, PRASAD K K, BANSAL N K. Radioactive waste management practices in India[J]. Nuclear Engineering and Design, 2006, 236(7): 914-930. [13] SUGILAL G, WATTAL P K, IYER K. Convective behaviour of a uniformly Joule-heated liquid pool in a rectangular cavity[J]. International Journal of Thermal Sciences, 2005, 44(10): 915-925. [14] HRMA P, POKORNY R, LEE S, et al. Heat transfer from glass melt to cold cap: melting rate correlation equation[J]. International Journal of Applied Glass Science, 2019, 10(2): 143-150. [15] MATSUNO S, ISO Y, UCHIDA H, et al. CFD modeling coupled with electric field analysis for joule-heated glass melters[J]. Journal of Power and Energy Systems, 2008, 2(1): 447-455. [16] LI H L, XING Z B, XU S Q, et al. 3D simulation of borosilicate glass all-electric melting furnaces[J]. Journal of the American Ceramic Society, 2014, 97(1): 141-149. [17] HAN J J, LI L Y, WANG J, et al. Simulation and evaluation of float glass furnace with different electrode positions[J]. Journal of the American Ceramic Society, 2022, 105(12): 7097-7110. [18] LI L Y, HAN J J, LIN H J, et al. Simulation of glass furnace with increased production by increasing fuel supply and introducing electric boosting[J]. International Journal of Applied Glass Science, 2020, 11(1): 170-184. [19] FERKL P, HRMA P, ABBOUD A, et al. Conversion kinetics during melting of simulated nuclear waste glass feeds measured by dissolution of silica[J]. Journal of Non-Crystalline Solids, 2022, 579: 121363. [20] GUILLEN D P, CAMBARERI J, ABBOUD A W, et al. Numerical comparison of bubbling in a waste glass melter[J]. Annals of Nuclear Energy, 2018, 113: 380-392. [21] ZHOU J, TAKAHASHI H, TSUZUKI N, et al. Investigation of flow behavior of joule-heating flow in a 2-D model of a reprocessing glass melter cavity[J]. Journal of Flow Control, Measurement & Visualization, 2018, 6(4): 199. [22] SUNEEL G, SATYA SAI P M, KAUSHIK C P, et al. Experimental investigation and numerical modeling of a joule-heated ceramic melter for vitrification of radioactive waste[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2019, 23(1): 04018035. [23] 刘 苏. 某高放废液玻璃固化工程陶瓷电熔炉启动的风险分析[D]. 衡阳: 南华大学, 2020. LIU S. The risk analysis of the ceramic melter start-up about the high-level radioactive liquid waste vitrification plant[D]. Hengyang: University of South China, 2020 (in Chinese). [24] 徐冬青, 李路瑶, 贾子强, 等. 高放废液玻璃固化中配合料的玻璃化过程与建模[J]. 硅酸盐学报, 2023, 51(8): 2009-2016. XU D Q, LI L Y, JIA Z Q, et al. Feed-to-glass conversion and modeling during high-level liquid waste vitrification[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2009-2016 (in Chinese). [25] 罗 强, 吴青松, 徐 祺, 等. 蒸汽发生器传热管Inconel 690合金的热物理性能测定[J]. 物理测试, 2014, 32(6): 3-5. LUO Q, WU Q S, XU Q, et al. Measurement on thermal physical properties of steam generator tubing materials Inconel 690 alloy[J]. Physics Examination and Testing, 2014, 32(6): 3-5 (in Chinese). [26] BALDRIDGE T, POLING G, FOROOZMEHR E, et al. Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications[J]. Optics and Lasers in Engineering, 2013, 51(2): 180-184. [27] GAN H, BUECHELE A C, KIM C W, et al. Corrosion of Inconel-690 electrodes in waste glass melts[J]. MRS Online Proceedings Library, 1999, 556(1): 287. [28] WANG R F, GU H Z, BAI C, et al. Relationship between phase composition, thermal conductivity and corrosion resistance of fused-cast AZS refractories[J]. Interceram-International Ceramic Review, 2021, 70(3): 56-61. [29] COCKCROFT S L, BRIMACORNBE J K, WALROD D G, et al. Thermal stress analysis of fused-cast AZS refractories during production: part II, development of thermo-elastic stress model[J]. Journal of the American Ceramic Society, 1994, 77(6): 1512-1521. [30] 王孝强, 庹先国, 周 慧, 等. 高硫高钠高放废液玻璃固化配方研究[J]. 核化学与放射化学, 2013, 35(3): 180-192. WANG X Q, TUO X G, ZHOU H, et al. Glass formulation development on high-sodium and high-sulfur bearing high level liquid waste for vitrification process[J]. Journal of Nuclear and Radiochemistry, 2013, 35(3): 180-192 (in Chinese). [31] POKORNY R, HRMA P. Mathematical modeling of cold cap[J]. Journal of Nuclear Materials, 2012, 429(1/2/3): 245-256. |