[1] 李世华, 郑 倩, 梁丽敏, 等. 超高性能混凝土工作性和力学性能的影响因素研究[J]. 混凝土与水泥制品, 2022(12): 53-57. LI S H, ZHENG Q, LIANG L M, et al. Study on the influencing factors of workability and mechanical properties of ultra-high performance concrete[J]. China Concrete and Cement Products, 2022(12): 53-57 (in Chinese). [2] 张高展, 葛竞成, 丁庆军, 等. 轻质超高性能混凝土的制备及性能形成机理[J]. 硅酸盐学报, 2021, 49(2): 381-390. ZHANG G Z, GE J C, DING Q J, et al. Preparation and formation mechanism of lightweight ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 381-390 (in Chinese). [3] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(23): 33-43. SHAO X D, QIU M H, YAN B F, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Materials Reports, 2017, 31(23): 33-43 (in Chinese). [4] 余 睿, 范定强, 水中和, 等. 基于颗粒最紧密堆积理论的超高性能混凝土配合比设计[J]. 硅酸盐学报, 2020, 48(8): 1145-1154. YU R, FAN D Q, SHUI Z H, et al. Mix design of ultra-high performance concrete based on particle densely packing theory[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1145-1154 (in Chinese). [5] 王 军, 李坤杰, 毕 耀, 等. 城市污泥对固废陶粒的强度影响研究[J]. 混凝土, 2022(1): 122-126. WANG J, LI K J, BI Y, et al. Study on the effect of municipal sludge on the strength of solid waste pottery sand[J]. Concrete, 2022(1): 122-126(in Chinese). [6] 崔延超, 田炳阳, 陈小慧, 等. 电镀污泥生物沥浸渣制备陶粒[J]. 应用化工, 2023, 52(5): 1357-1361. CUI Y C, TIAN B Y, CHEN X H, et al. Preparation of ceramsite by electroplating sludge bioleaching residue[J]. Applied Chemical Industry, 2023, 52(5): 1357-1361 (in Chinese). [7] SUN H, QUE Z C, WEI H N, et al. Tunning matrix rheology and mechanical performance of ultra-high performance concrete using cellulose nanofibers[J]. Nanotechnology Reviews, 2022, 11(1): 1570-1582. [8] DIXIT A, VERMA A, PANG S D. Dual waste utilization in ultra-high performance concrete using biochar and marine clay[J]. Cement and Concrete Composites, 2021, 120: 104049. [9] XIE T, FANG C, MOHAMAD ALI M S, et al. Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): an experimental study[J]. Cement and Concrete Composites, 2018, 91: 156-173. [10] XU F M, LIN X S, ZHOU A N. Performance of internal curing materials in high-performance concrete: a review[J]. Construction and Building Materials, 2021, 311: 125250. [11] ZHONG P H, HU Z L, GRIFFA M, et al. Mechanisms of internal curing water release from retentive and non-retentive superabsorbent polymers in cement paste[J]. Cement and Concrete Research, 2021, 147: 106494. [12] BALAPOUR M, ZHAO W J, GARBOCZI E J, et al. Potential use of lightweight aggregate (LWA) produced from bottom coal ash for internal curing of concrete systems[J]. Cement and Concrete Composites, 2020, 105: 103428. [13] 王立成, 张 磊. 混凝土内养护技术研究进展[J]. 建筑材料学报, 2020, 23(6): 1471-1478. WANG L C, ZHANG L. Research progress on concrete internal curing technology[J]. Journal of Building Materials, 2020, 23(6): 1471-1478 (in Chinese). [14] LIU J H, SHI C J, MA X W, et al. An overview on the effect of internal curing on shrinkage of high performance cement-based materials[J]. Construction and Building Materials, 2017, 146: 702-712. [15] CRAEYE B, GEIRNAERT M, DE SCHUTTER G. Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks[J]. Construction and Building Materials, 2011, 25(1): 1-13. [16] 刘 喜, 吕贝贝, 刘全威, 等. 高强轻骨料陶粒混凝土配合比及强度影响因素试验研究[J]. 硅酸盐学报, 2014, 33(4): 847-852. LIU X, LV B B, LIU Q W, et al. Mechanical properties of lightweight concrete under mix proportion and strength factors[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(4): 847-852 (in Chinese). [17] VALIPOUR M, KHAYAT K H. Coupled effect of shrinkage-mitigating admixtures and saturated lightweight sand on shrinkage of UHPC for overlay applications[J]. Construction and Building Materials, 2018, 184: 320-329. [18] MENG W N, KHAYAT K. Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete[J]. Cement and Concrete Research, 2017, 101: 46-54. [19] HE B F, WANG G J. Is ceramsite the last straw for sewage sludge disposal: a review of sewage sludge disposal by producing ceramsite in China[J]. Water Science and Technology, 2019, 80(1): 1-10. [20] 桑 迪, 王爱国, 孙道胜, 等. 利用工业固体废弃物制备烧胀陶粒的研究进展[J]. 材料导报, 2016, 30(9): 110-114. SANG D, WANG A G, SUN D S, et al. Manufacturing sintering-expanded ceramsite from industrial solid wastes[J]. Materials Reports, 2016, 30(9): 110-114 (in Chinese). [21] 尹天一, 王志宇, 余 睿, 等. 多孔陶粒对超高性能混凝土的性能影响[J]. 混凝土, 2022(9): 137-140+148. YIN T Y, WANG Z Y, YU R, et al. Influence of porous ceramsite on the performance of ultra-high performance concrete[J]. Concrete, 2022(9): 137-140+148 (in Chinese). [22] SUZUKI M, SEDDIK M, SATO R. Reuse of sewage sludge and waste glass in the production of lightweight aggregates[J]. Cement and Concrete Research, 2009, 39(5): 373-381. [23] 刘林佩. 陶粒混凝土预制空心墙板制备及性能研究[D]. 重庆: 重庆大学, 2021. LIU L P. Study on preparation and properties of precast hollow wall panels with ceramsite concrete[D]. Chongqing: Chongqing University, 2021 (in Chinese). [24] 张高展, 王宇譞, 葛竞成, 等. 轻集料对超高性能混凝土工作和力学性能的影响[J]. 建筑材料学报, 2021, 24(3): 499-507. ZHANG G Z, WANG Y X, GE J C, et al. Preparation and formation mechanism of lightweight ultra-high performance concrete[J]. Journal of Building Materials, 2021, 24(3): 499-507(in Chinese). [25] 丁庆军, 郭凯正, 程华强, 等. 陶砂和钢纤维对轻质超高性能混凝土的影响[J]. 混凝土, 2023(4): 59-63. DING Q J, GUO K Z, CHENG H Q, et al. Influence of pottery sand and steel fiber on lightweight ultra high performance concrete[J]. Concrete, 2023(4): 59-63 (in Chinese). [26] 蒋春园, 姚丕强, 黄 雄, 等. 粗陶砂对超高性能混凝土的性能及微观结构的影响[J]. 混凝土, 2023(7): 21-23+27. JIANG C Y, YAO P Q, HUANG X, et al. Effect of coarse pottery sand on the performance and microstructure of ultra-high performance concrete[J]. Concrete, 2023(7): 21-23+27 (in Chinese). [27] 褚洪岩, 安圆圆, 秦健健, 等. 轻质高性能混凝土力学性能及微观结构研究[J]. 硅酸盐通报, 2023, 42(8): 2722-2732. CHU H Y, AN Y Y, QIN J J, et al. Mechanical properties and microstructure of high performance lightweight concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2722-2732 (in Chinese). [28] 郑洪建. 页岩陶砂内养护混凝土实验研究[D]. 大连: 大连理工大学, 2020. ZHENG H J. Experimental study on internal curing concrete with shale pottery sand[D]. Dalian: Dalian University of Technology, 2020 (in Chinese). [29] 赵瀚隆. 多孔集料对混凝土的减缩作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. ZHAO H L. Reduction effect of porous aggregate on shrinkage of concrete[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). [30] 于凌波. 页岩陶砂对超高性能混凝土力学性能的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. YU L B. Study on influence of shale lightweight sand on the mechanical properties of ultra-high performance concrete[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). [31] 姚鹏飞. 复合石灰石粉-尾矿混合砂混凝土力学性能与微观机理研究[D]. 徐州: 中国矿业大学, 2021. YAO P F. Study on mechanical properties and micro mechanism of composite limestone powder-tailings mixed sand concrete[D]. Xuzhou: China University of Mining and Technology, 2021 (in Chinese). [32] 梅军帅. 海砂海水对水泥砂浆性能的影响及微观机理分析[D]. 武汉: 武汉纺织大学, 2020. MEI J S. The influence of sea sand and sea water on the performance of cement mortar[D]. Wuhan: Wuhan Textile University, 2020 (in Chinese). [33] 周倩倩. 轻骨料对超高性能混凝土力学性能及微结构的影响[D]. 长沙: 中南大学, 2022. ZHOU Q Q. Effects of lightweight aggregates on mechanical properties and microstructure of ultra-high-performance concrete[D]. Changsha: Central South University, 2022 (in Chinese). |