[1] 李明超, 冯 达, 张梦溪, 等. 碾压混凝土层间水分非饱和传输试验与数值分析[J]. 水利学报, 2022, 53(1): 86-97+108. LI M C, FENG D, ZHANG M X, et al. Experimental and numerical analysis of unsaturated water transfer of RCC layers[J]. Journal of Hydraulic Engineering, 2022, 53(1): 86-97+108 (in Chinese). [2] 李俊杰, 陈旭东, 张 轩. 基于区间数理论的碾压混凝土坝层面性态综合评价[J]. 水电能源科学, 2019, 37(11): 92-95. LI J J, CHEN X D, ZHANG X. Comprehensive evaluation of interfaces behavior of roller compacted concrete dams based on interval number theory[J]. Water Resources and Power, 2019, 37(11): 92-95 (in Chinese). [3] 蒋荣清, 刘伟佳, 牛旭婧, 等. 碾压混凝土坝分层浇筑施工风险及其控制措施研究[J]. 混凝土, 2023(4): 176-179. JIANG R Q, LIU W J, NIU X J, et al. Research on construction risks and control measures of layered pouring of RCC dam[J]. Concrete, 2023(4): 176-179 (in Chinese). [4] 邢 岳, 田正宏, 杜 辉. 碾压混凝土坝层间结合质量智能评价方法[J]. 长江科学院院报, 2020, 37(8): 142-149. XING Y, TIAN Z H, DU H. Intelligent evaluation of interlayer bonding quality of RCC dam[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(8): 142-149 (in Chinese). [5] 申嘉荣, 徐千军. 碾压混凝土坝层面抗剪断强度的人工神经网络与模糊逻辑系统预测[J]. 清华大学学报(自然科学版), 2019, 59(5): 345-353. SHEN J R, XU Q J. Prediction of interlayer shear strength parameters for RCC dams using artificial neural network and fuzzy logic system[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(5): 345-353 (in Chinese). [6] 祝小靓, 傅琼华, 高江林, 等. 双膨胀源层面材料力学特性及微观结构研究[J]. 水力发电, 2018, 44(12): 117-120. ZHU X L, FU Q H, GAO J L, et al. Study on mechanical properties and microstructure of double expansion source material[J]. Water Power, 2018, 44(12): 117-120 (in Chinese). [7] 向岳峰, 陈 新, 周武松, 等. 层面处理方式对胶结砂砾石抗剪强度的影响[J]. 水电能源科学, 2018, 36(11): 136-138. XIANG Y F, CHEN X, ZHOU W S, et al. Effect of layer treatment on shear strength of CSG[J]. Water Resources and Power, 2018, 36(11): 136-138 (in Chinese). [8] LUO D N, LU S H, HU C, et al. Experimental and numerical investigation on interlayer fracture process of roller compacted concrete[J]. Construction and Building Materials, 2022, 342: 127998. [9] 耿士超, 张 成, 何腾飞, 等. 碾压混凝土层面成熟度及其不同处理方法对层间各项性能影响的研究[J]. 山西水利, 2019, 35(12): 38-41. GENG S C, ZHANG C, HE T F, et al. Study on the maturity of RCC layer and the influence of different treatment methods on the properties of layers[J]. Shanxi Water Resources, 2019, 35(12): 38-41 (in Chinese). [10] SHEN M X, ZHAO Y, BI J, et al. In situ experimental study on mechanical properties of interlayer in roller compacted concrete (RCC) dam[J]. Construction and Building Materials, 2023, 379: 131268. [11] SHAMSAEI M, AGHAYAN I, KAZEMI K A. Experimental investigation of using cross-linked polyethylene waste as aggregate in roller compacted concrete pavement[J]. Journal of Cleaner Production, 2017, 165: 290-297. [12] 晏班夫, 寇宇航, 秦筵越, 等. 基于DIC方法的混凝土结构裂缝开展全局识别与重构[J]. 中国公路学报, 2024, 37(3): 283-297. YAN B F, KOU Y H, QIN Y Y, et al. Global identification and reconstruction of concrete structural cracks based on DIC method[J]. China Journal of Highway and Transport, 2024, 37(3): 283-297 (in Chinese). [13] 姚洁香, 董 伟, 钟 红. 岩石-混凝土界面拉伸断裂性能的率相关性研究[J]. 工程力学, 2022, 39(12): 108-119. YAO J X, DONG W, ZHONG H. Rate-dependency of tensile fracture properties of rock-concrete interface[J]. Engineering Mechanics, 2022, 39(12): 108-119 (in Chinese). [14] 罗 滔, 李骄洋, 张天祺, 等. 基于DIC技术的自密实混凝土界面裂缝扩展规律研究[J]. 水资源与水工程学报, 2024, 35(1): 143-153. LUO T, LI J Y, ZHANG T Q, et al. Study on interface crack propagation law of self-compacting concrete based on DIC technology[J]. Journal of Water Resources and Water Engineering, 2024, 35(1): 143-153 (in Chinese). [15] 许 颖, 樊 悦, 王青原, 等. 基于DIC的聚丙烯纤维增强混凝土断裂过程分析[J]. 华中科技大学学报(自然科学版), 2024, 52(2): 103-111. XU Y, FAN Y, WANG Q Y, et al. Fracture process analysis of polypropylene fiber reinforced concrete based on DIC[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(2): 103-111 (in Chinese). [16] 杨子涵, 舒江鹏, 杨静滢, 等. 基于DIC技术的钢筋混凝土梁剪切裂缝自动提取与量化方法[J]. 工程力学, 2024, 41(增刊1): 187-196. YANG Z H, SHU J P, YANG J Y, et al. Automation extraction and quantification of shear cracks in reinforced concrete beams based on DIC technology[J]. Engineering Mechanics, 2024, 41(supplement 1): 187-196 (in Chinese). [17] 孙文昊, 安风娇, 谢 俊, 等. 基于DIC技术分析钢纤维对混凝土轴压性能的影响[J]. 混凝土, 2023(12): 35-38+43. SUN W H, AN F J, XIE J, et al. Analysis of the influence of steel fiber on the axial compression performance of concrete based on DIC technology[J]. Concrete, 2023(12): 35-38+43 (in Chinese). [18] 赵燕茹, 张 杰, 宋 博, 等. 基于DIC方法的高温后混凝土应变局部化研究[J]. 混凝土, 2022(4): 37-43. ZHAO Y R, ZHANG J, SONG B, et al. Research on strain localization of concrete after high temperature based on DIC method[J]. Concrete, 2022(4): 37-43 (in Chinese). [19] JIN X Y, TONG J, TIAN Y, et al. Time-varying relative displacement field on the surface of concrete cover caused by reinforcement corrosion based on DIC measurement[J]. Construction and Building Materials, 2018, 159: 695-703. [20] BASHAR S M, MUSA A. Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica[J]. Construction and Building Materials, 2018, 159: 234-251. [21] 国家能源局. 水工碾压混凝土试验规程: DL/T 5433—2009[S]. 北京: 中国电力出版社, 2009. National Energy Administration. Hydraulic roller compacted concrete test procedures: DL/T 5433—2009[S]. Beijing: China Electric Power Publishing House, 2009 (in Chinese). [22] ZHOU Y W, ZHUANG J H, XU W Z, et al. Study on mechanical performance and mesoscopic simulation of nano-SiO2 modified recycled aggregate concrete[J]. Construction and Building Materials, 2024, 425: 136053. [23] RONG Z D, JIAO M P, ZHANG J Q. Effect of modified nano-SiO2 on properties and microstructure of the high-performance cementitious composites[J]. Construction and Building Materials, 2023, 403: 133063. [24] 涂贞军, 史才军, 何平平, 等. 掺CaCO3粉及后续水养护对CO2养护混凝土强度和显微结构的影响[J]. 硅酸盐学报, 2016, 44(8): 1110-1119. TU Z J, SHI C J, HE P P, et al. Effects of CaCO3 powder and subsequent water curing on compressive strength and microstructure of CO2-cured concrete[J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1110-1119 (in Chinese). |