欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (12): 4339-4349.

• 水泥混凝土 • 上一篇    下一篇

高性能混凝土的早期抗压强度预测和极值寻优

范明辉, 杨普新, 李薇, 任文渊, 马驰骋   

  1. 西北农林科技大学水利与建筑工程学院, 杨陵 712100
  • 收稿日期:2024-06-11 修订日期:2024-08-09 出版日期:2024-12-15 发布日期:2024-12-19
  • 通信作者: 任文渊,博士,副教授。E-mail:wenyuange304@nwafu.edu.cn
  • 作者简介:范明辉(1999—),男,硕士研究生。主要从事混凝土材料的研究。E-mail:van__ming@nwafu.edu.cn

Early Compressive Strength Prediction and Extreme Value Optimization for High Performance Concrete

FAN Minghui, YANG Puxin, LI Wei, REN Wenyuan, MA Chicheng   

  1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
  • Received:2024-06-11 Revised:2024-08-09 Published:2024-12-15 Online:2024-12-19

摘要: 高性能混凝土7 d抗压强度作为早期强度的重要指标,对建筑工程质量的影响不容忽视。为了实现高性能混凝土的抗压强度预测及极值寻优,本文基于Logistic混沌映射改进麻雀搜索算法(LCSSA)优化BP神经网络,建立LCSSA-BP预测模型。选取88组数据作为训练集、38组数据作为测试集,对比BP、支持向量机(SVM)、极限学习机(ELM)、人工蜂群算法优化BP神经网络(ABC-BP)、布谷鸟搜索算法优化BP神经网络(CS-BP)模型的预测结果。从数据集划分、输入变量数量的角度出发,验证了LCSSA-BP模型的预测精度。采用遗传算法进行抗压强度寻优,确定高性能混凝土配合比的最佳掺量。研究表明:相较于其他模型,LCSSA-BP模型具有更高的预测精度、更低的预测误差;当按照9-1划分训练集和测试集时,模型决定系数R2为0.975,相关系数R为0.987;综合考虑变量的关联度和数据分布特性,选取水泥、高炉矿渣、水、粗骨料和细骨料作为输入变量时,模型R2为0.954,R为0.977;遗传算法在高性能混凝土早期7 d抗压强度寻优和配合比设计方面具有较高的可行性和实用性。

关键词: 高性能混凝土, 早期抗压强度, 极值寻优, 配合比, LCSSA-BP, 遗传算法, 麻雀搜索算法

Abstract: 7 d compressive strength of high performance concrete, as an important indicator of early strength, has a significant impact on the quality of construction projects that cannot be ignored. In order to achieve high performance concrete compressive strength prediction and extreme value optimization, this paper optimised the BP neural network based on the logistic chaos mapping improved sparrow search algorithm (LCSSA), and established the LCSSA-BP prediction model. 88 sets of data were selected as the training set and 38 sets of data as the test set to compare the prediction results of BP,support vector machine (SVM), extreme learning machine (ELM), artificial bee colony algorithm-BP (ABC-BP) and cuckoo search-BP (CS-BP) models. The prediction accuracy of the LCSSA-BP model was verified from the perspectives of data set division and the number of input variables. Genetic algorithm was used for compressive strength optimization to determine the optimum mix proportion for high performance concrete. The study shows that compared with other models, the LCSSA-BP model has higher prediction accuracy and lower prediction error; when the training set and test set are divided according to 9-1, the determination coefficient R2 of model is 0.975 and correlation coefficient R is 0.987; considering the correlation degree of the variables and the characteristics of the data distribution, when cement, blast furnace slag, water, coarse aggregate and fine aggregate are selected as input variables, the R2 is 0.954, R is 0.977; the genetic algorithm has high feasibility and practicability in the optimization of high-performance concrete early 7 d compressive strength and mix proportion design.

Key words: high performance concrete, early compressive strength, extreme value optimization, mix proportion, LCSSA-BP, genetic algorithm, sparrow search algorithm

中图分类号: