[1] SWAMY R N. High performance and durability through design[J]. Special Publication, 1996, 159: 209-230. [2] BHARATKUMAR B H, NARAYANAN R, RAGHUPRASAD B K, et al. Mix proportioning of high performance concrete[J]. Cement and Concrete Composites, 2001, 23(1): 71-80. [3] DUSHIMIMANA A, NIYONSENGA A A, NZAMURAMBAHO F. A review on strength development of high performance concrete[J]. Construction and Building Materials, 2021, 307: 124865. [4] 王海英, 李子彤, 张英治, 等. 基于拌和生产数据的BP神经网络混凝土抗压强度预测[J]. 建筑科学与工程学报, 2024, 41(3): 18-25. WANG H Y, LI Z T, ZHANG Y Z, et al. BP neural network prediction of concrete compressive strength based on mixing production data[J]. Journal of Architecture and Civil Engineering, 2024, 41(3): 18-25 (in Chinese). [5] 李地红, 高 群, 夏 娴, 等. 基于BP神经网络的混凝土综合性能预测[J]. 材料导报, 2019, 33(增刊2): 317-320. LI D H, GAO Q, XIA X, et al. Prediction of comprehensive performance of concrete based on BP neural network[J]. Materials Reports, 2019, 33(supplement 2): 317-320 (in Chinese). [6] 王鹏辉, 乔宏霞, 冯 琼, 等. 基于PSO-BPNN模型的氯氧镁水泥混凝土耐水性预测[J]. 建筑材料学报, 2024, 27(3): 189-196. WANG P H, QIAO H X, FENG Q, et al. Prediction of water resistance of magnesium oxychloride cement concrete based on PSO-BPNN model[J]. Journal of Building Materials, 2024, 27(3): 189-196 (in Chinese). [7] 汪声瑞, 胡 畔, 陈思宝, 等. 基于耦合BAS-MLP的混凝土抗压强度预测[J]. 建筑材料学报, 2023, 26(7): 705-715. WANG S R, HU P, CHEN S B, et al. Prediction of concrete compressive strength based on coupled BAS-MLP[J]. Journal of Building Materials, 2023, 26(7): 705-715 (in Chinese). [8] 黄 炜, 周 烺, 葛 培, 等. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030. HUANG W, ZHOU L, GE P, et al. A comparative study on compressive strength model of recycled brick aggregate concrete based on PSO-BP and GA-BP neural networks[J]. Materials Reports, 2021, 35(15): 15026-15030 (in Chinese). [9] 邹 翔, 殷松峰, 程 跃, 等. 基于ISSA-BP神经网络的激光甲烷传感器温度补偿研究[J]. 光子学报, 2023, 52(8): 0814003. ZOU X, YIN S F, CHENG Y, et al. Temperature compensation study of laser methane sensor based on ISSA-BP neural network[J]. Acta Photonica Sinica, 2023, 52(8): 0814003 (in Chinese). [10] 孟志军, 刘淮玉, 安晓飞, 等. 基于SPA-SSA-BP的小麦秸秆含水率检测模型[J]. 农业机械学报, 2022, 53(2): 231-238+245. MENG Z J, LIU H Y, AN X F, et al. Prediction model of wheat straw moisture content based on SPA-SSA-BP[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 231-238+245 (in Chinese). [11] 张 良, 何 山, 艾纯玉. 基于Sine-SSA-BP神经网络模型的风机叶根载荷预测[J]. 可再生能源, 2023, 41(10): 1322-1328. ZHANG L, HE S, AI C Y. The wind turbine leaf root load prediction based on Sine-SSA-BP neural network model[J]. Renewable Energy Resources, 2023, 41(10): 1322-1328 (in Chinese). [12] YEH I C. Concrete compressive strength[CP]. UCI Machine Learning Repository, 2007. [13] 刘廷滨, 黄 滔, 欧嘉祥, 等. 基于ANN和XGB算法的锈蚀钢筋混凝土高温粘结强度预测方法[J]. 工程力学, 2024, 41(增刊1): 300-309. LIU T B, HUANG T, OU J X, et al. Prediction method of bond strength of corroded reinforced concrete at high temperature based on ANN and XGB algorithm[J]. Engineering Mechanics, 2024, 41(supplement 1): 300-309 (in Chinese). [14] 吕 庆, 刘月明, 张振峰, 等. 基于承钢生产数据预测烧结矿FeO含量[J]. 钢铁研究学报, 2018, 30(12): 957-962. LYU Q, LIU Y M, ZHANG Z F, et al. Prediction of FeO content in sinter based on production data of Chengde Steel Mill[J]. Journal of Iron and Steel Research, 2018, 30(12): 957-962 (in Chinese). [15] MUKHERJEE A, NAG BISWAS S. Artificial neural networks in prediction of mechanical behavior of concrete at high temperature[J]. Nuclear Engineering and Design, 1997, 178(1): 1-11. [16] BAI J, WILD S, WARE J A, et al. Using neural networks to predict workability of concrete incorporating metakaolin and fly ash[J]. Advances in Engineering Software, 2003, 34(11/12): 663-669. [17] 王述红, 董福瑞. 基于变形预测和参数反演的山岭隧道围岩稳定性分析[J]. 岩土工程学报, 2023, 45(5): 1024-1035. WANG S H, DONG F R. Stability analysis of surrounding rock of mountain tunnels based on deformation prediction and parameter inversion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1024-1035 (in Chinese). [18] 吕 鑫, 慕晓冬, 张 钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720. LYU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720 (in Chinese). [19] WANG K W, REN J, YAN J W, et al. Research on a concrete compressive strength prediction method based on the random forest and LCSSA-improved BP neural network[J]. Journal of Building Engineering, 2023, 76: 107150. [20] 周新茂, 郑焮元, 于正鑫, 等. 基于相似日理论和LCSSA-BP的短期光伏发电功率预测[J]. 电网与清洁能源, 2022, 38(11): 88-97. ZHOU X M, ZHENG X Y, YU Z X, et al. Short-term photovoltaic power prediction based on similarity day theory and LCSSA-BP[J]. Advances of Power System & Hydroelectric Engineering, 2022, 38(11): 88-97 (in Chinese). [21] 胡明伟, 何国庆, 吴雯琳, 等. 基于改进Logistic-SSA-BP神经网络的地铁短时客流预测研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(3): 90-97. HU M W, HE G Q, WU W L, et al. Subway short-term passenger flow forecast based on improved logistic-SSA-BP neural network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(3): 90-97 (in Chinese). [22] 陈 庆, 马 瑞, 蒋正武, 等. 基于GA-BP神经网络的UHPC抗压强度预测与配合比设计[J]. 建筑材料学报, 2020, 23(1): 176-183, 191. CHEN Q, MA R, JIANG Z W, et al. Compressive strength prediction and mix proportion design of UHPC based on GA-BP neural network[J]. Journal of Building Materials, 2020, 23(1): 176-183, 191 (in Chinese). [23] 韩建军, 赵道松, 李建平. 基于BP神经网络的垃圾飞灰混凝土抗压强度预测模型[J]. 混凝土, 2022(9): 78-81. HAN J J, ZHAO D S, LI J P. Prediction model of compressive strength of garbage fly ash concrete based on BP neural network[J]. Concrete, 2022(9): 78-81 (in Chinese). [24] 包子阳, 余继周, 杨 杉. 智能优化算法及其MATLAB实例[M]. 北京: 电子工业出版社, 2021. BAO Z Y, YU J Z, YANG S. Smart optimization algorithms and their MATLAB examples[M]. Beijing: Publishing House of Electronics Industry, 2021 (in Chinese). [25] 董建军, 谢洪阳, 戴宜文, 等. 基于GA-BP算法的高炉矿渣-粉煤灰混凝土抗压强度预测[J]. 统计学与应用, 2022, 11(1): 27-37. DONG J J, XIE H Y, DAI Y W, et al. Compressive strength prediction of blast furnace slag-fly ash concrete based on GA-BP algorithm[J]. Statistics and Application, 2022, 11(1): 27-37 (in Chinese). [26] 朱燕丽, 马川义, 张吉哲, 等. 沥青胶浆-集料界面水盐侵蚀损伤与多因素影响规律研究[J/OL]. 材料导报, 1-21 (2024-04-17)[2024-06-05]. http://kns.cnki.net/kcms/detail/50.1078.TB.20240415.1544.029.html. ZHU Y L, MA C Y, ZHANG J Z, et al. Experimental investigation of moisture-salt erosion and multiple factors influence on asphalt mortar-aggregate interface[J/OL]. Materials Reports, 1-21 (2024-04-17)[2024-06-05]. http://kns.cnki.net/kcms/detail/50.1078.TB.20240415.1544.029.html (in Chinese). [27] 段妹玲, 张 单, 袁锦虎, 等. 基于ISSA-GRU的混凝土抗压强度预测[J]. 硅酸盐通报, 2023, 42(7): 2392-2400. DUAN M L, ZHANG D, YUAN J H, et al. Prediction of compressive strength of concrete based on ISSA-GRU[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2392-2400 (in Chinese). [28] 陈 谦, 王朝辉, 傅 豪, 等. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16): 16172-16177. CHEN Q, WANG Z H, FU H, et al. Prediction and extreme value optimisation of tensile strength of waterborne epoxy resin for road[J]. Materials Guide, 2021, 35(16): 16172-16177 (in Chinese). |