硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (12): 4295-4312.
成鑫磊1, 穆锐1,2, 刘晓英1
收稿日期:
2024-05-15
修订日期:
2024-08-09
出版日期:
2024-12-15
发布日期:
2024-12-19
通信作者:
刘晓英,博士,副教授。E-mail:lxy_ctbu@163.com
作者简介:
成鑫磊(1989—),男,讲师。主要从事智能化装配式结构、材料性能的研究。E-mail:1656079952@qq.com
基金资助:
CHENG Xinlei1, MU Rui1,2, LIU Xiaoying1
Received:
2024-05-15
Revised:
2024-08-09
Published:
2024-12-15
Online:
2024-12-19
摘要: 超高性能混凝土(UHPC)作为一种先进的水泥基复合材料,因具有优异的力学性能,在高寒、高盐碱、海洋等特殊环境或大跨度及特殊强度要求的建筑结构中被广泛应用。针对UHPC的力学性能及改良调控方法,本文从设计理论与制备方法、力学性能机理与表征、影响因素与调控手段等角度出发,详细分析介绍了UHPC在力学性能及改良方面取得的最新研究成果,对UHPC的配合比、养护制度、工作环境等影响因素进行系统分析总结,深入探讨了影响UHPC力学性能的关键因素,并针对UHPC的制备方法、耐久性研究以及相关的技术规范体系进行展望,以期能促进其在工程实践中的研发与推广应用。
中图分类号:
成鑫磊, 穆锐, 刘晓英. 超高性能混凝土的制备及力学性能研究进展[J]. 硅酸盐通报, 2024, 43(12): 4295-4312.
CHENG Xinlei, MU Rui, LIU Xiaoying. Review on Preparation and Mechanical Properties of Ultra-High Performance Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4295-4312.
[1] SPASOJEVIC A, REDAELLI D, RUIZ M F, et al. Influence of tensile properties of UHPFRC on size effect in bending[C]//Proceedings of the Ultra High Performance Concrete-second International Symposium on Ultra High Performance Concrete, Kassel, Germany, 2008. [2] AKEED M H, QAIDI S, AHMED H U, et al. Ultra-high-performance fiber-reinforced concrete. Part I: developments, principles, raw materials[J]. Case Studies in Construction Materials, 2022, 17: e01290. [3] BIRCHALL J D, HOWARD A J, KENDALL K. Flexural strength and porosity of cements[J]. Nature, 1981, 289: 388-390. [4] ROSSI P, ARCA A, PARANT E, et al. Bending and compressive behaviours of a new cement composite[J]. Cement and Concrete Research, 2005, 35(1): 27-33. [5] BACHE H H. Densified cement ultra-fine particle-based materials[C]//Proceedings of the 2nd International Conference on Superplasticizers in Concrete, Ottawa: Aalborg Portland, 1981: 33. [6] SOLIMAN N A, TAGNIT-HAMOU A. Development of ultra-high-performance concrete using glass powder: towards ecofriendly concrete[J]. Construction and Building Materials, 2016, 125: 600-612. [7] DE LARRARD F, SEDRAN T. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cement and Concrete Research, 1994, 24(6): 997-1009. [8] RICHARD P, CHEYREZY M H. Reactive powder concretes with high ductility and 200~800 MPa compressive strength[C]//Concrete Technology: Past, Present, and Future. American Concrete Institute, 1994. [9] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. [10] AÏTCIN P C, LACHEMI M, ADELINE R, et al. The Sherbrooke reactive powder concrete footbridge[J]. Structural Engineering International, 1998, 8(2): 140-144. [11] 丁 超, 贾子杰, 王振华, 等. 基于生命周期评价的UHPC碳排放控制潜力评估[J]. 硅酸盐通报, 2023, 42(4): 1242-1251. DING C, JIA Z J, WANG Z H, et al. UHPC carbon emission control potential based on life cycle assessment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1242-1251 (in Chinese). [12] CHEN Y X, YU R, WANG X P, et al. Evaluation and optimization of ultra-high performance concrete (UHPC) subjected to harsh ocean environment: towards an application of layered double hydroxides (LDHs)[J]. Construction and Building Materials, 2018, 177: 51-62. [13] QIAN H, ZHU Y Y, LIANG P H, et al. Interface damage monitoring of assembled GFRP-UHPC composite beams using piezoelectric smart aggregate[J]. Smart Material Structures, 2022, 31(12): 124002. [14] ZHU J Y, CHEN F X, DAI X Q, et al. Development of a novel ultra-high performance concrete (UHPC) suitable for underwater operation: design and performance evaluation[J]. Journal of Building Engineering, 2023, 75: 107030. [15] LV Y J, QIN Y M, WANG J L, et al. Effect of incorporating hematite on the properties of ultra-high performance concrete including nuclear radiation resistance[J]. Construction and Building Materials, 2022, 327: 126950. [16] 赖建中, 何 勇, 任辉启. UHPC防护工程材料研究进展[J]. 防护工程, 2023, 45(1): 1-7. LAI J Z, HE Y, REN H Q. Progress of UHPC protective engineering material research[J]. Protective Engineering, 2023, 45(1): 1-7 (in Chinese). [17] DU J, MENG W N, KHAYAT K H, et al. New development of ultra-high-performance concrete (UHPC)[J]. Composites Part B: Engineering, 2021, 224: 109220. [18] YU R, LIU K N, YIN T Y, et al. Comparative study on the effect of steel and polyoxymethylene fibers on the characteristics of ultra-high performance concrete (UHPC)[J]. Cement and Concrete Composites, 2022, 127(6): 104418. [19] PARK S H, KIM D J, RYU G S, et al. Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J]. Cement and Concrete Composites, 2012, 34(2): 172-184. [20] TAYEH B A, ABU-BAKAR B H, Johari M A M, et al. Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation: a review[C]//Proceedings of the 2nd International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE), Univ Sebelas Maret, Dept Civil Engn, Indonesia, Mar 08-10, 2012: 525-538. [21] FAN D Q, ZHU J Y, FAN M X, et al. Intelligent design and manufacturing of ultra-high performance concrete (UHPC): a review[J]. Construction and Building Materials, 2023, 385: 131495. [22] YU R, SPIESZ P, BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2014, 56: 29-39. [23] FAN D Q, YU R, SHUI Z H, et al. A new design approach of steel fibre reinforced ultra-high performance concrete composites: experiments and modeling[J]. Cement and Concrete Composites, 2020, 110: 103597. [24] FAN D Q, RUI Y, LIU K N, et al. Optimized design of steel fibres reinforced ultra-high performance concrete (UHPC) composites: towards to dense structure and efficient fibre application[J]. Construction and Building Materials, 2021, 273: 121698. [25] YIN T Y, YU R, LIU K N, et al. Precise mix-design of ultra-high performance concrete (UHPC) based on physicochemical packing method: from the perspective of cement hydration[J]. Construction and Building Materials, 2022, 352: 128944. [26] HOU D S, WU D, WANG X P, et al. Sustainable use of red mud in ultra-high performance concrete (UHPC): design and performance evaluation[J]. Cement and Concrete Composites, 2021, 115: 103862. [27] 余 睿, 范定强, 水中和, 等. 基于颗粒最紧密堆积理论的超高性能混凝土配合比设计[J]. 硅酸盐学报, 2020, 48(8): 1145-1154. YU R, FAN D Q, SHUI Z H, et al. Mix design of ultra-high performance concrete based on particle densely packing theory[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1145-1154 (in Chinese). [28] 温得成, 魏定邦, 吴来帝, 等. 基于MAA模型的UHPC基体配合比设计和特性分析[J]. 建筑材料学报, 2022, 25(7): 693-699+743. WEN D C, WEI D B, WU L D, et al. Research on mix design and characteristics of UHPC matrix mixture based on MAA model[J]. Journal of Building Materials, 2022, 25(7): 693-699+743 (in Chinese). [29] 韩建军, 廖 党, 席壮民, 等. 磁铁矿防辐射超高性能混凝土制备及性能研究[J]. 硅酸盐通报, 2021, 40(9): 2930-2938. HAN J J, LIAO D, XI Z M, et al. Preparation and properties of ultra-high performance concrete for radiation protection of magnetite[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2930-2938 (in Chinese). [30] LI L G, KWAN A K H. Packing density of concrete mix under dry and wet conditions[J]. Powder Technology, 2014, 253: 514-521. [31] WANG X P, YU R, SONG Q L, et al. Optimized design of ultra-high performance concrete (UHPC) with a high wet packing density[J]. Cement and Concrete Research, 2019, 126: 105921. [32] LI L Z, CAI Z W, YU K Q, et al. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa[J]. Cement and Concrete Composites, 2019, 97: 202-217. [33] AHMED H U, MOHAMMED A S, QAIDI S M A, et al. Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling[J]. European Journal of Environmental and Civil Engineering, 2023, 27(3): 1383-1428. [34] AMRAN M, MURALI G, MAKUL N, et al. Sustainable development of eco-friendly ultra-high performance concrete (UHPC): cost, carbon emission, and structural ductility[J]. Construction and Building Materials, 2023, 398: 132477. [35] CHEN H J, YU Y L, TANG C W. Mechanical properties of ultra-high performance concrete before and after exposure to high temperatures[J]. Materials, 2020, 13(3): 770. [36] LIU J H, WANG M S, LIU N N, et al. Development of ultra-fine SAP powder for lower-shrinkage and higher-strength cement pastes made with ultra-low water-to-binder ratio[J]. Composites Part B: Engineering, 2023, 262: 110810. [37] SHARMA R, JANG J G, BANSAL P P. A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete[J]. Journal of Building Engineering, 2022, 45: 103314. [38] ZDEB T. An analysis of the steam curing and autoclaving process parameters for reactive powder concretes[J]. Construction and Building Materials, 2017, 131: 758-766. [39] RONG Q, HOU X M, GE C. Quantifying curing and composition effects on compressive and tensile strength of 160-250 MPa RPC[J]. Construction and Building Materials, 2020, 241: 117987. [40] YOO D Y, KANG M C, CHOI H J, et al. Influence of chemically treated carbon fibers on the electromagnetic shielding of ultra-high-performance fiber-reinforced concrete[J]. Archives of Civil and Mechanical Engineering, 2020, 20(4): 123. [41] 赵金侠, 黄 亮, 谢建和. 不同配比和养护条件对超高性能混凝土微观结构的影响[J]. 中国公路学报, 2019, 32(7): 111-119. ZHAO J X, HUANG L, XIE J H. Effects of mix proportion and curing condition on the microstructure of ultra-high performance concrete[J]. China Journal of Highway and Transport, 2019, 32(7): 111-119 (in Chinese). [42] LESSLY S H, KUMAR S L, JAWAHAR R R, et al. Durability properties of modified ultra-high performance concrete with varying cement content and curing regime[J]. Materials Today: Proceedings, 2021, 45: 6426-6432. [43] BAHMANI H, MOSTOFINEJAD D. A review of engineering properties of ultra-high-performance geopolymer concrete[J]. Developments in the Built Environment, 2023, 14: 100126. [44] LIU Y W, SHI C J, ZHANG Z H, et al. Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume[J]. Cement and Concrete Composites, 2020, 112: 103665. [45] LIU Y W, ZHANG Z H, SHI C J, et al. Development of ultra-high performance geopolymer concrete (UHPGC): influence of steel fiber on mechanical properties[J]. Cement and Concrete Composites, 2020, 112: 103670. [46] LIU Y W, LU C F, HU X, et al. Effect of silica fume on rheology of slag-fly ash-silica fume-based geopolymer pastes with different activators[J]. Cement and Concrete Research, 2023, 174: 107336. [47] YU R, SPIESZ P, BROUWERS H J H. Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount[J]. Construction and Building Materials, 2014, 65: 140-150. [48] MUHD NORHASRI M S, HAMIDAH M S, FADZIL A M. Inclusion of nano metaclayed as additive in ultra high performance concrete (UHPC)[J]. Construction and Building Materials, 2019, 201: 590-598. [49] OH T, CHUN B, JANG Y S, et al. Effect of nano-SiO2 on fiber-matrix bond in ultra-high-performance concrete as partial substitution of silica flour[J]. Cement and Concrete Composites, 2023, 138: 104957. [50] WU Z M, KHAYAT K H, SHI C J, et al. Mechanisms underlying the strength enhancement of UHPC modified with nano-SiO2 and nano-CaCO3[J]. Cement and Concrete Composites, 2021, 119: 103992. [51] GUO D C, GUO M H, ZHOU Y W, et al. Use of nano-silica to improve the performance of LC3-UHPC: mechanical behavior and microstructural characteristics[J]. Construction and Building Materials, 2024, 411: 134280. [52] WANG S W, WANG B, ZHU H T, et al. Ultra-high performance concrete: mix design, raw materials and curing regimes: a review[J]. Materials Today Communications, 2023, 35: 105468. [53] 徐翔波, 于 泳, 金祖权, 等. 养护制度对超高性能混凝土微观结构和力学性能影响的研究综述[J]. 硅酸盐通报, 2021, 40(9): 2856-2870. XU X B, YU Y, JIN Z Q, et al. Review on effects of microstructure and mechanical properties of ultra-high performance concrete by curing regimes[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2856-2870 (in Chinese). [54] 吴建东, 郭丽萍, 曹园章, 等. 蒸汽养护制度对超高性能混凝土早期力学性能及微观结构的影响[J]. 东南大学学报(自然科学版), 2022, 52(4): 744-752. WU J D, GUO L P, CAO Y Z, et al. Effect of steam curing system on the early mechanical property and microstructure of ultra-high performance concrete[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(4): 744-752 (in Chinese). [55] YANG Z H, XIE Y J, HE J H, et al. A comparative study on the mechanical properties and microstructure of cement-based materials by direct electric curing and steam curing[J]. Materials, 2021, 14(23): 7407. [56] MA C, DAI F, SHI J Y, et al. Achieving energy savings and early-ages strength enhancement of prefabricated cement components: combined application of direct electric curing and sodium sulphate[J]. Journal of Cleaner Production, 2023, 425: 138802. [57] 高 原, 谢恩慧, 姚 庚, 等. 普通混凝土生产工艺制备非预混UHPC的实践与验证[J]. 混凝土, 2023(1): 131-135. GAO Y, XIE E H, YAO G, et al. Practice and verification of preparing non premixed UHPC by ordinary concrete production process[J]. Concrete, 2023(1): 131-135 (in Chinese). [58] 李传习, 聂 洁, 冯 峥, 等. 振动搅拌对超高性能混凝土施工及力学性能影响[J]. 硅酸盐通报, 2019, 38(8): 2586-2594. LI C X, NIE J, FENG Z, et al. Effect of vibratory mixing on the construction and mechanical properties of ultra-high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2586-2594 (in Chinese). [59] 陈宝春, 季 韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. CHEN B C, JI T, HUANG Q W, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24 (in Chinese). [60] KANG S H, LEE J H, HONG S G, et al. Microstructural investigation of heat-treated ultra-high performance concrete for optimum production[J]. Materials, 2017, 10(9): 1106. [61] RAI B, WILLE K. Time-dependent properties of steam cured non-proprietary ultra high-performance concretes[J]. Case Studies in Construction Materials, 2024, 20: e02760. [62] PREM P R, RAMACHANDRA MURTHY A, BHARATKUMAR B H. Influence of curing regime and steel fibres on the mechanical properties of UHPC[J]. Magazine of Concrete Research, 2015, 67(18): 988-1002. [63] HELMI M, HALL M R, STEVENS L A, et al. Effects of high-pressure/temperature curing on reactive powder concrete microstructure formation[J]. Construction and Building Materials, 2016, 105: 554-562. [64] GUO P W, MENG W N, DU J, et al. Lightweight ultra-high-performance concrete (UHPC) with expanded glass aggregate: development, characterization, and life-cycle assessment[J]. Construction and Building Materials, 2023, 371: 130441. [65] HANNAWI K, BIAN H, PRINCE-AGBODJAN W, et al. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes[J]. Composites Part B: Engineering, 2016, 86: 214-220. [66] BAHMANI H, MOSTOFINEJAD D. Microstructure of ultra-high-performance concrete (UHPC): a review study[J]. Journal of Building Engineering, 2022, 50: 104118. [67] ZHANG L Q, SHEN H, XU K C, et al. Effect of ceramic waste tile as a fine aggregate on the mechanical properties of low-carbon ultrahigh performance concrete[J]. Construction and Building Materials, 2023, 370: 130595. [68] ZHUANG W T, LI S H, WANG Z Z, et al. Impact of micromechanics on dynamic compressive behavior of ultra-high performance concrete containing limestone powder[J]. Composites Part B: Engineering, 2022, 243: 110160. [69] 张燕燕. 冻融作用下超高性能混凝土细观结构损伤研究[J]. 混凝土, 2023(10): 221-224. ZHANG Y Y. Research on damage of microstructure of ultra-high performance concrete under freeze-thaw action[J]. Concrete, 2023(10): 221-224 (in Chinese). [70] AKEED M H, QAIDI S, AHMED H U, et al. Ultra-high-performance fiber-reinforced concrete. Part II: hydration and microstructure[J]. Case Studies in Construction Materials, 2022, 17: e01289. [71] TAYLOR R, RICHARDSON I G, BRYDSON R M D. Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag[J]. Cement and Concrete Research, 2010, 40(7): 971-983. [72] SHEN P L, LU L N, HE Y J, et al. The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete[J]. Cement and Concrete Research, 2019, 118: 1-13. [73] YU J, LI G Y, LEUNG C K Y. Hydration and physical characteristics of ultrahigh-volume fly ash-cement systems with low water/binder ratio[J]. Construction and Building Materials, 2018, 161: 509-518. [74] ZHOU X, SHI Y, HU Q C, et al. Discrete element simulation of the relationship between composition, ITZ property, and tensile behavior of eco-friendly UHPC matrix[J]. Materials, 2023, 16(10): 3844. [75] KIANMOFRAD F. Development of design procedures for fiber reinforced concrete (FRC) & ultra-high-performance concrete (UHPC) based on experimental evaluations[D]. State of Arizona: Arizona State University, 2018. [76] CHANG W, ZHENG W Z. Effects of key parameters on fluidity and compressive strength of ultra-high performance concrete[J]. Structural Concrete, 2020, 21(2): 747-760. [77] HE J Y, CHEN W Z, ZHANG B S, et al. The mechanical properties and damage evolution of UHPC reinforced with glass fibers and high-performance polypropylene fibers[J]. Materials, 2021, 14(9): 2455. [78] NANA W S A, TRAN H V, GOUBIN T, et al. Behaviour of macro-synthetic fibers reinforced concrete: experimental, numerical and design code investigations[J]. Structures, 2021, 32: 1271-1286. [79] HUANG H L, LUO J, PENG C H, et al. Interfacial bond between modified micro carbon fiber and high-strength cement paste in UHPC: bond-slip tests and molecular dynamic simulation[J]. Cement and Concrete Composites, 2023, 142: 105168. [80] 刘 健, 刘方宁, 张志勇. 钢纤维取向及其对超高性能混凝土力学性能影响研究综述[J]. 材料导报, 2024, 38(增刊1): 248-256. LIU J, LIU F N, ZHANG Z Y. Steel fiber alignment and its effect on the mechanical properties of ultra-high performance Concrete: a review[J]. Materials Reports, 2024, 38(supplement 1): 248-256 (in Chinese). [81] 沈秀将, 邵旭东, BRÜHWILER E. 基于纤维取向分布的应变硬化超高性能混凝土薄层抗拉性能[J]. 硅酸盐学报, 2021, 49(11): 2384-2392. SHEN X J, SHAO X D, BRÜHWILER E. Tensile response of strain-hardening ultra-high performance fiber concrete thin layer based on fiber orientation distribution[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2384-2392 (in Chinese). [82] TJIPTOBROTO P, HANSEN W. Mechanism for tensile strain hardening in high performance cement-based fiber reinforced composites[J]. Cement and Concrete Composites, 1991, 13(4): 265-273. [83] NAAMAN A E, MOAVENZADEH F, MCGARRY F J. Probabilistic analysis of fiber-reinforced concrete[J]. Journal of the Engineering Mechanics Division, 1974, 100(2): 397-413. [84] ROMUALDI J P, MANDEL J A. Tensile strength of concrete affected by unigormly distributed and closely spaced short lengths of wire reinforcement[J]. ACI Journal Proceedings, 1964, 61(6): 657-672. [85] COX H L. The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics, 1952, 3(3): 72-79. [86] CHUA P S, PIGGOTT M R. The glass fibre—polymer interface: I—theoretical consideration for single fibre pull-out tests[J]. Composites Science and Technology, 1985, 22(1): 33-42. [87] WANG R, GAO X J, HUANG H H, et al. Influence of rheological properties of cement mortar on steel fiber distribution in UHPC[J]. Construction and Building Materials, 2017, 144: 65-73. [88] 丁庆军, 龚金华, 周 鹏. 碳化硼对超高性能混凝土准静态力学性能的影响分析[J]. 混凝土, 2023(5): 1-4. DING Q J, GONG J H, ZHOU P. Effect of boron carbide on quasi-static mechanical properties of UHPC[J]. Concrete, 2023(5): 1-4 (in Chinese). [89] 赵继之, 辛公锋, 陶慕轩, 等. 超高性能混凝土单轴拉、压循环作用下力学性能及其本构模型研究[J]. 工程力学, 2024, 41(4): 81-93. ZHAO J Z, XIN G F, TAO M X, et al. Mechanical properties and constitutive model of ultra-high performance concrete material under uniaxialtension and compression cycles[J]. Engineering Mechanics, 2024, 41(4): 81-93 (in Chinese). [90] 苏 捷, 史才军, 黄泽恩, 等. 粗骨料含量对超高性能混凝土抗压强度尺寸效应的影响[J]. 硅酸盐学报, 2021, 49(11): 2416-2422. SU J, SHI C J, HUANG Z E, et al. Scale effect on cubic compressive strength on ultra-high performance concrete containing coarse aggregate[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2416-2422 (in Chinese). [91] 苏 捷, 刘 伟, 史才军, 等. 超高性能混凝土立方体抗压强度尺寸效应[J]. 硅酸盐学报, 2021, 49(2): 305-311. SU J, LIU W, SHI C J, et al. Scale effect of cubic compressive strength of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 305-311 (in Chinese). [92] 王 龙, 池 寅, 徐礼华, 等. 混杂纤维超高性能混凝土力学性能尺寸效应[J]. 建筑材料学报, 2022, 25(8): 781-788. WANG L, CHI Y, XU L H, et al. Size effect of mechanical properties of hybrid fiber ultra-high performance concrete[J]. Journal of Building Materials, 2022, 25(8): 781-788 (in Chinese). [93] 张超慧. 超高性能混凝土精细化模拟及其力学行为分析[D]. 长沙: 湖南大学, 2021. ZHANG C H. Fine simulation and mechanical behavior analysis of ultra-high performance concrete[D]. Changsha: Hunan University, 2021 (in Chinese). [94] 李爱军. UHPC-NC复合配筋梁的弯曲性能研究[D]. 兰州: 兰州交通大学, 2022. LI A J. Study on bending behavior of UHPC-NC composite reinforced beams[D]. Lanzhou: Lanzhou Jiatong University, 2022 (in Chinese). [95] 查 上, 邓文琴, 刘 朵, 等. 波形钢腹板工字钢-UHPC组合梁抗弯性能试验研究[J/OL]. 工程力学: 1-12(2024-03-26) [2024-05-12]. http://kns.cnki.net/kcms/detail/11.2595.O3.20240304.1241.008.html. ZHA S, DENG W Q, LIU D, et al. Experimental research on flexural performance of I-beam-UHPC composite beam with corrugated steel webs[J/OL]. Engineering Mechanics: 1-12 (2024-03-26) [2024-05-12]. http://kns.cnki.net/kcms/detail/11.2595.O3.20240304.1241.008.html (in Chinese). [96] 刘数华, 阎培渝, 冯建文. 活性粉末混凝土在桥梁工程中的研究和应用[J]. 公路, 2009, 54(3): 149-154. LIU S H, YAN P Y, FENG J W. A study and application of reactive powder concrete (RPC) in bridge engineering[J]. Highway, 2009, 54(3): 149-154 (in Chinese). [97] LEUTBECHER T, REBLING J. Predicting the postcracking strength of ultra-high performance fiber reinforced concrete by means of three-point bending tests according to EN 14651[J]. Structural Concrete, 2019, 20(6): 2081-2095. [98] AKEED M H, QAIDI S, AHMED H U, et al. Ultra-high-performance fiber-reinforced concrete. Part III: fresh and hardened properties[J]. Case Studies in Construction Materials, 2022, 17: e01265. [99] LI J, WU C Q, HAO H. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion[J]. Engineering Structures, 2015, 102: 395-408. [100] JIA P C, WU H, MA L L, et al. Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact[J]. Nuclear Engineering and Technology, 2022, 54(11): 4146-4158. [101] LIU J, PENG Y, XU S C, et al. Investigation of geopolymer-based ultra-high performance concrete slabs against contact explosions[J]. Construction and Building Materials, 2022, 315: 125727. [102] 赖建中, 孙 伟, 戎志丹. 活性粉末混凝土在多次冲击荷载下的力学行为[J]. 爆炸与冲击, 2008, 28(6): 532-538. LAI J Z, SUN W, RONG Z D. Dynamic mechanical behaviour of reactive powder concretesubjected to repeated impact[J]. Explosion and Shock Waves, 2008, 28(6): 532-538 (in Chinese). [103] WU H, HU F, FANG Q. A comparative study for the impact performance of shaped charge JET on UHPC targets[J]. Defence Technology, 2019, 15(4): 506-518. [104] 程月华, 吴 昊, 谭可可, 等. 装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究[J]. 爆炸与冲击, 2022, 42(5): 30-50. CHENG Y H, WU H, TAN K K, et al. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets[J]. Explosion and Shock Waves, 2022, 42(5): 30-50 (in Chinese). [105] SU Q, WU H, FANG Q. Calibration of KCC model for UHPC under impact and blast loadings[J]. Cement and Concrete Composites, 2022, 127: 104401. [106] 聂晓东, 吴祥云, 龙志林, 等. 弹体对超高性能混凝土侵彻深度的研究[J]. 爆炸与冲击, 2024, 44(2): 136-150. NIE X D, WU X Y, LONG Z L, et al. Research on penetration depth of projectiles into ultra-high performance concrete targets[J]. Explosion and Shock Waves, 2024, 44(2): 136-150 (in Chinese). [107] SPARKS P A, SHERBURN J A, HEARD W F, et al. Penetration modeling of ultra-high performance concrete using multiscale meshfree methods[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(14): 2328-2351. [108] 张高展, 吴明明, 杨 军, 等. 低收缩防辐射超高性能混凝土的制备及其性能形成机理[J]. 硅酸盐学报, 2021, 49(11): 2405-2415. ZHANG G Z, WU M M, YANG J, et al. Preparation of low-shrinkage and radiation-shielding ultra-high performance concrete and its performance formation mechanism[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2405-2415 (in Chinese). [109] ZHU Y P, HUSSEIN H, KUMAR A, et al. A review: material and structural properties of UHPC at elevated temperatures or fire conditions[J]. Cement and Concrete Composites, 2021, 123: 104212. [110] 何越骁, 黄维蓉, 郭江川, 等. 共聚甲醛纤维超高性能混凝土高温后残余力学性能[J]. 硅酸盐学报, 2022, 50(3): 839-848. HE Y X, HUANG W R, GUO J C, et al. Residual mechanical properties of ultra-high performance concrete doped with copolymer formaldehyde fiber exposed to high temperature[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 839-848 (in Chinese). [111] 杨 婷, 杨烨凯, 刘中宪, 等. 高温后超高性能混凝土力学性能试验研究[J/OL]. 工程力学: 1-18(2024-08-29) [2024-05-12]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230825.1753.004.html. YANG T, YANG Y K, LIU Z X, et al. Investigation on mechanical properties of ultra-high performance concrete after high temperature[J/OL]. Engineering Mechanics: 1-18 (2024-08-29) [2024-05-12]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230825.1753.004.html (in Chinese). [112] 罗伊明, 张 博, 刘彦钰, 等. 混杂纤维增强超高性能混凝土的高温性能试验研究[J]. 硅酸盐通报, 2024, 43(3): 825-832. LUO Y M, ZHANG B, LIU Y Y, et al. Experimental study on high temperature performance of hybrid fiber reinforced ultra-high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 825-832 (in Chinese). [113] 艾金华, 何 倍, 张 翼, 等. 超低温作用下UHPC受弯力学行为及其本构关系[J]. 建筑材料学报, 2024, 27(1): 23-29. AI J H, HE B, ZHANG Y, et al. Flexural behaviour and constitutive correlation of UHPC at cryogenic temperatures[J]. Journal of Building Materials, 2024, 27(1): 23-29 (in Chinese). [114] BEIRNES M, DAGENAIS M A, WIGHT G. Cold temperature effects on the impact resistance of thin, lightweight UHPFRC panels[J]. International Journal of Impact Engineering, 2019, 127: 110-121. [115] ALKAYSI M, EL-TAWIL S, LIU Z C, et al. Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC)[J]. Cement and Concrete Composites, 2016, 66: 47-56. [116] TAFRAOUI A, ESCADEILLAS G, VIDAL T. Durability of the ultra high performances concrete containing metakaolin[J]. Construction and Building Materials, 2016, 112: 980-987. [117] AMIN M, ZEYAD A M, TAYEH B A, et al. Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra high-performance concrete[J]. Construction and Building Materials, 2022, 320: 126233. [118] XI B, AL-OBAIDI S, FERRARA L. Effect of different environments on the self-healing performance of ultra high-performance concrete: a systematic literature review[J]. Construction and Building Materials, 2023, 374: 130946. |
[1] | 唐芮枫, 崔素萍, 杨飞华, 王肇嘉, 王子明. 合成过程中聚羧酸共聚物用量对纳米C-S-H晶核成核及其早强作用的影响[J]. 硅酸盐通报, 2024, 43(9): 3128-3136. |
[2] | 吴晓刚, 杨健辉, 袁冬冬, 田道坡, 李志超, 王庭辉. 骨料种类对超高性能混凝土性能影响机理研究[J]. 硅酸盐通报, 2024, 43(9): 3164-3172. |
[3] | 赵国庆, 杨进波, 尹航. C-S-H凝胶无定型纳米孔隙中NaCl蒸发结晶分子动力学分析[J]. 硅酸盐通报, 2024, 43(9): 3173-3181. |
[4] | 赵燕茹, 龙思睿, 白建文, 刘明. 高温后风积沙混凝土力学性能与微观结构试验研究[J]. 硅酸盐通报, 2024, 43(9): 3182-3191. |
[5] | 张震洋, 张璐, 伊海赫, 郑润, 马克顺, 张琳, 任梦琪, 王春光. 基于响应面法的地聚物混凝土力学性能试验研究[J]. 硅酸盐通报, 2024, 43(9): 3192-3202. |
[6] | 王萧萧, 董培森, 杨鑫瑞, 张菊, 闫长旺, 董宇飞. 低温作用下钢纤维地聚合物混凝土力学性能研究[J]. 硅酸盐通报, 2024, 43(9): 3203-3213. |
[7] | 黄斌, 龚明子, 潘阿馨, 饶先鹏, 王涛, 陈晨, 黄伟. 减水剂与钢纤维对超高性能混凝土流变及力学性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3214-3223. |
[8] | 王浩, 谭盐宾, 刘星, 杨鲁, 元强, 谢斌福, 刘博. 火成岩质矿物材料对混凝土性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3244-3251. |
[9] | 李艳艳, 杜晓丽, 王浩伟, 徐锴. 硅灰-聚丙烯纤维双掺混凝土的动静态力学性能[J]. 硅酸盐通报, 2024, 43(9): 3320-3329. |
[10] | 崔莹莹, 何健辉, 吕民望, 杨露, 刘云鹏. 可完全循环水泥砂浆配料制备贝利特水泥熟料的性能研究[J]. 硅酸盐通报, 2024, 43(9): 3348-3358. |
[11] | 刘宏波, 贾小静, 张博洋, 孙岩, 李泳, 常璞, 孙婧. 双掺石墨烯-氧化石墨烯再生粗骨料混凝土力学性能和抗冻耐久性研究[J]. 硅酸盐通报, 2024, 43(9): 3359-3367. |
[12] | 陈浩, 杨静潇, 徐勇, 靖正阳, 涂兵田, 王皓. Mg0.27Al2.58O3.73N0.27透明陶瓷的热压/热等静压烧结制备与性能[J]. 硅酸盐通报, 2024, 43(9): 3378-3385. |
[13] | 赵存河, 聂光临, 刘一军, 左飞, 庞伟科, 汪庆刚, 包亦望. 不同熔剂体系制备的陶瓷岩板及其性能[J]. 硅酸盐通报, 2024, 43(9): 3386-3398. |
[14] | 韩峥, 汪涛, 刘治伟, 聂云鹏, 王雪婷. 室温挤出3D打印HA/β-TCP/DCPA骨支架的复合浆料研究[J]. 硅酸盐通报, 2024, 43(9): 3472-3478. |
[15] | 陈峰, 仪珂, 王朝辉, 党武娟, 屈希峰. 纤维改性水泥基材料研究进展:水泥稳定基层[J]. 硅酸盐通报, 2024, 43(9): 3479-3493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||