硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (11): 4083-4098.
刘博研, 彭新盼, 郭昭呈, 刘琦, 范丽花, 宋学锋
收稿日期:
2024-05-24
修订日期:
2024-06-24
出版日期:
2024-11-15
发布日期:
2024-11-21
通信作者:
宋学锋,博士,教授。E-mail:songxuefeng@xauat.edu.cn
作者简介:
刘博研(2003—),男。主要从事材料应用方向的研究。E-mail:liuboyan@xauat.edu.cn
基金资助:
LIU Boyan, PENG Xinpan, GUO Zhaocheng, LIU Qi, FAN Lihua, SONG Xuefeng
Received:
2024-05-24
Revised:
2024-06-24
Published:
2024-11-15
Online:
2024-11-21
摘要: 地质聚合物指以铝硅酸盐类工业固体废弃物、烧黏土为原料,在化学激发作用下经“解聚-缩聚-重构”过程制备的新型无机胶凝材料。与传统硅酸盐水泥相比,地质聚合物制备过程低碳环保、结构可控、性能可调,被誉为21世纪最具发展前景的绿色胶凝材料。同时,地质聚合物因形成过程与人工合成沸石相似,具有沸石矿物的物质和结构遗传特性。基于沸石的离子交换吸附特性,以地质聚合物为吸附材料应用于污水治理迅速成为研究热点。本文归纳了地质聚合物的合成机理与结构特性,概述了地质聚合物在污水治理领域中的研究现状,探讨了地质聚合物在污水治理领域面临的问题与发展前景。
中图分类号:
刘博研, 彭新盼, 郭昭呈, 刘琦, 范丽花, 宋学锋. 地质聚合物在污水治理领域中的研究进展[J]. 硅酸盐通报, 2024, 43(11): 4083-4098.
LIU Boyan, PENG Xinpan, GUO Zhaocheng, LIU Qi, FAN Lihua, SONG Xuefeng. Research Progress of Geopolymers in Sewage Treatment[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(11): 4083-4098.
[1] DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [2] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [3] 杨 达, 卢明阳, 宋 迪, 等. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(增刊1): 644-649. YANG D, LU M Y, SONG D, et al. Research progress of geological polymer cement[J]. Materials Guide, 2021, 35 (supplement 1): 644-649 (in Chinese). [4] STURM P, GLUTH G J G, SIMON S, et al. The effect of heat treatment on the mechanical and structural properties of one-part geopolymer-zeolite composites[J]. Thermochimica Acta, 2016, 635: 41-58. [5] 崔学民, 唐 青, 李纯民, 等. 地质聚合物中类沸石结构的形成及应用[J]. 稀有金属材料与工程, 2015, 44(11): 600-603. CUI X M, TANG Q, LING C M, et al. Formation and application of zeolite-like structures in geopolymers[J]. Rare Metal Materials & Engineering, 2015, 44(11): 600-603 (in Chinese). [6] GLUKHOVSKY V D. Soil silicates: their properties, technology and manufacturing and fields of application[D]. Uraine: Civil Engineering Institute, 1965. [7] PROVIS J L, LUKEY G C, VAN DEVENTER J S J. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results[J]. Chemistry of Materials, 2005, 17(12): 3075-3085. [8] YAN H, CUI X M, JIN M, et al. The hydrothermal transformation of solid geopolymers into zeolites[J]. Microporous and Mesoporous Materials, 2012, 161: 187-192. [9] ZHANG J, HE Y, WANG Y P, et al. Synthesis of a self-supporting faujasite zeolite membrane using geopolymer gel for separation of alcohol/water mixture[J]. Materials Letters, 2014, 116: 167-170. [10] ZHENG G J, CUI X M, ZHANG W P, et al. Preparation of geopolymer precursors by sol-gel method and their characterization[J]. Journal of Materials Science, 2009, 44(15): 3991-3996. [11] WENG L, SAGOE-CRENTSIL K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part I—low Si/Al ratio systems[J]. Journal of Materials Science, 2007, 42(9): 2997-3006. [12] DAVIDOVITS J. Properties of geopolymer cements[A]. First international conference on alkaline cements and concretes, 1994, 1: 131-149. [13] BIRANCHI P. 3D printing of high-volume fly ash mixtures for digital concrete construction[D]. Singapore: Nanyang Technological University, 2019. [14] ELGARAHY A M, MAGED A, ELOFFY M G, et al. Geopolymers as sustainable eco-friendly materials: classification, synthesis routes, and applications in wastewater treatment[J]. Separation and Purification Technology, 2023, 324: 124631. [15] PARATHI S, NAGARAJAN P, PALLIKKARA S A. Ecofriendly geopolymer concrete: a comprehensive review[J]. Clean Technologies and Environmental Policy, 2021, 23(6): 1701-1713. [16] 徐 庆, 李 秋, 陈 伟, 等. 碱激发剂模数对地质聚合物透水混凝土的性能影响研究[J]. 硅酸盐通报, 2018, 37(11): 3575-3580+3586. XU Q, LI Q, CHEN W, et al. Effect of modulus of alkali-activator on the properties of GGBS-based geopolymer pervious concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3575-3580+3586 (in Chinese). [17] 黄学满, 饶吉来, 杜 凯. 煤矸石基地质聚合物的制备与性能优化研究[J]. 矿业安全与环保, 2023, 50(6): 92-97+103. HUANG X M, RAO J L, DU K. Preparation and performance optimization of coal gangue-based geopolymer[J]. Mining Safety & Environmental Protection, 2023, 50(6): 92-97+103 (in Chinese). [18] 包申旭, 周海林, 张一敏, 等. 地质聚合物的制备与应用研究现状[J].有色金属(冶炼部分), 2024, 5: 126-135. BAO S X, ZHOU H L, ZHANG Y M, et al. Current status of preparation and application of geological polymers[J]. Non-Ferrous Metals (Smelting Part), 2024, 5: 126-135 (in Chinese). [19] SHI S, LI H, ZHOU Q Z, et al. Alkali-activated fly ash cured with pulsed microwave and thermal oven: a comparison of reaction products, microstructure and compressive strength[J]. Cement and Concrete Research, 2023, 166: 107104. [20] YUAN J K, HE P G, JIA D C. The effect of Si/Al on mechanical properties and fracture behavior of stainless steel mesh/Crp reinforced geopolymer composites[J]. MATEC Web of Conferences, 2017, 97: 01011. [21] LI Z F, GAO Y F, ZHANG J, et al. Effect of particle size and thermal activation on the coal gangue based geopolymer[J]. Materials Chemistry and Physics, 2021, 267: 124657. [22] 魏 玮, 杨 涛. 高流动性3D打印水泥基材料制备及性能研究[J]. 混凝土与水泥制品, 2021(2): 8-12. WEI W, YANG T. Study on preparation and properties of high fluidity 3D printed cement-based materials[J]. China Concrete and Cement Products, 2021(2): 8-12 (in Chinese). [23] 胡金浪, 丁国新, 张仕成, 等. 多孔地质聚合物发泡工艺及吸附性能研究进展[J]. 化工新型材料, 2023, 51(11): 272-277. HU J L, DING G X, ZHANG S C, et al. Research progress on foaming process and adsorption performance of porous geopolymers[J]. New Chemical Materials, 2023, 51(11): 272-277 (in Chinese). [24] LAN T, LI P F, REHMAN F U, et al. Efficient adsorption of Cd2+ from aqueous solution using metakaolin geopolymers[J]. Environmental Science and Pollution Research, 2019, 26(32): 33555-33567. [25] MALEKI A, HAJIZADEH Z, SHARIFI V, et al. A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions[J]. Journal of Cleaner Production, 2019, 215: 1233-1245. [26] BOUNA L, FAKIR A A E, BENLHACHEMI A, et al. Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay[J]. Applied Clay Science, 2020, 196: 105764. [27] ACISLI O, ACAR I, KHATAEE A. Preparation of a fly ash-based geopolymer for removal of a cationic dye: isothermal, kinetic and thermodynamic studies[J]. Journal of Industrial and Engineering Chemistry, 2020, 83: 53-63. [28] ACISLI O, ACAR I, KHATAEE A. Preparation of a surface modified fly ash-based geopolymer for removal of an anionic dye: parameters and adsorption mechanism[J]. Chemosphere, 2022, 295: 133870. [29] SELKÄLÄ T, SUOPAJÄRVI T, SIRVIÖ J A, et al. Surface modification of cured inorganic foams with cationic cellulose nanocrystals and their use as reactive filter media for anionic dye removal[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27745-27757. [30] CHEN X, GUO Y G, DING S, et al. Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions[J]. Journal of Cleaner Production, 2019, 207: 789-800. [31] MALEKI A, MOHAMMAD M, EMDADI Z, et al. Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions[J]. Arabian Journal of Chemistry, 2020, 13(1): 3017-3025. [32] 鄢茹月, 秦伟伟, 曾俊楠, 等. 地质聚合物用于废水处理的现状与发展趋势研究——基于文献计量分析[J]. 环境科学学报, 2023, 43(12): 194-205. YAN R Y, QIN W W, ZENG J N, et al. The current status and development trend of geopolymers used in wastewater treatment based on bibliometric analysis[J]. Acta Scientiae Circumstantiae, 2023, 43(12): 194-205 (in Chinese). [33] ZHANG Y J, HE P Y, YANG M Y, et al. A new graphene bottom ash geopolymeric composite for photocatalytic H2 production and degradation of dyeing wastewater[J]. International Journal of Hydrogen Energy, 2017, 42(32): 20589-20598. [34] INNOCENTINI M D M, BOTTI R F, BASSI P M, et al. Lattice-shaped geopolymer catalyst for biodiesel synthesis fabricated by additive manufacturing[J]. Ceramics International, 2019, 45(1): 1443-1446. [35] 张凯铭, 杨 浪, 饶 峰, 等. 地质聚合物多孔材料的制备及应用研究进展[J]. 金属矿山, 2022, 10: 226-237. ZHANG K M, YANG L, RAO F, et al. Progress in the preparation and application of geological polymer porous materials [J]. Metal Mine, 2022, 10: 226-237 (in Chinese). [36] CHINDAPRASIRT P, JITSANGIAM P, CHALEE W, et al. Case study of the application of pervious fly ash geopolymer concrete for neutralization of acidic wastewater[J]. Case Studies in Construction Materials, 2021, 15: e00770. [37] EL ALOUANI M, ALEHYEN S, EL ACHOURI M, et al. Preparation, characterization, and application of metakaolin-based geopolymer for removal of methylene blue from aqueous solution[J]. Journal of Chemistry, 2019, 2019(1): 4212901. [38] NOVAIS R M, ASCENS Ã O G, TOBALDI D M, et al. Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters[J]. Journal of Cleaner Production, 2018, 171: 783-794. [39] GE Y Y, CUI X M, LIAO C L, et al. Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu(II) in water: batch and column studies[J]. Chemical Engineering Journal, 2017, 311: 126-134. [40] CHENG T W, LEE M L, KO M S, et al. The heavy metal adsorption characteristics on metakaolin-based geopolymer[J]. Applied Clay Science, 2012, 56: 90-96. [41] LIU Y, YAN C J, ZHANG Z H, et al. A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution[J]. Fuel, 2016, 185: 181-189. [42] ROŻEK P, KRÓL M, MOZGAWA W. Spectroscopic studies of fly ash-based geopolymers[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2018, 198: 283-289. [43] TANG Q, WANG K T, YASEEN M, et al. Synthesis of highly efficient porous inorganic polymer microspheres for the adsorptive removal of Pb2+ from wastewater[J]. Journal of Cleaner Production, 2018, 193: 351-362. [44] TIAN Q Z, SASAKI K. Application of fly ash-based geopolymer for removal of cesium, strontium and arsenate from aqueous solutions: kinetic, equilibrium and mechanism analysis[J]. Water Science and Technology, 2019, 79(11): 2116-2125. [45] SIYAL A A, SHAMSUDDIN M R, KHAHRO S H, et al. Optimization of synthesis of geopolymer adsorbent for the effective removal of anionic surfactant from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104949. [46] PADMAPRIYA M, RAMESH S T, BIJU V M. Synthesis of seawater based geopolymer: characterization and adsorption capacity of methylene blue from wastewater[J]. Materials Today: Proceedings, 2022, 51: 1770-1776. [47] EL ALOUANI M, ALEHYEN S, EL ACHOURI M, et al. Comparative study of the adsorption of micropollutant contained in aqueous phase using coal fly ash and activated coal fly ash: kinetic and isotherm studies[J]. Chemical Data Collections, 2019, 23: 100265. [48] NOVAIS R M, BURUBERRI L H, SEABRA M P, et al. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters[J]. Journal of Hazardous Materials, 2016, 318: 631-640. [49] AKAR S T, KOC E, SAYIN F, et al. Design and modeling of the decolorization characteristics of a regenerable and eco-friendly geopolymer: batch and dynamic flow mode treatment aspects[J]. Journal of Environmental Management, 2021, 298: 113548. [50] NJIMOU J R, PENGOU M, TCHAKOUTE H K, et al. Removal of lead ions from aqueous solution using phosphate-based geopolymer cement composite[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(5): 1358-1369. [51] LAN T, GUO S W, LI X L, et al. Mixed precursor geopolymer synthesis for removal of Pb(II) and Cd(II)[J]. Materials Letters, 2020, 274: 127977. [52] EL ALOUANI M, ALEHYEN S, EL ACHOURI M, et al. Removal of cationic dye-methylene blue-from aque ous solution by adsorption on fly ash-based geopolymer[J]. Journal of Materials and Environmental Sciences, 2018, 9(1): 32-46. [53] HUA P Y, SELLAOUI L, FRANCO D, et al. Adsorption of acid green and procion red on a magnetic geopolymer based adsorbent: experiments, characterization and theoretical treatment[J]. Chemical Engineering Journal, 2020, 383: 123113. [54] BARBOSA T R, FOLETTO E L, DOTTO G L, et al. Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions[J]. Ceramics International, 2018, 44(1): 416-423. [55] 雷嘉芊. 粉煤灰基地质聚合物复合阳极材料的制备及电化学性能研究[D]. 西安: 西安建筑科技大学, 2021. LEI J Q. Preparation and electrochemical properties of fly ash-based geopolymer composite anode materials[D]. Xi'an: Xi'an University of Architecture and Technology, 2021 (in Chinese). [56] 窦怀远. 地质聚合物基锂分子筛的制备与表征[D]. 南宁: 广西大学, 2023. DOU H Y. Preparation and characterization of geopolymer-based lithium molecular sieves[D]. Nanning: Guangxi University, 2023 (in Chinese). [57] 王飞凡. 矿渣基地聚物微球的制备及其应用性能[D]. 南宁: 广西大学, 2023. WANG F F. Preparation and application properties of slag-based polymer microspheres[D]. Nanning: Guangxi University, 2023 (in Chinese). [58] 孟 倩. 地质聚合物光阳极材料的制备及光电催化性能[D]. 西安: 西安建筑科技大学, 2023. MENG Q. Preparation and photocatalytic properties of geopolymer photoanode materials[D]. Xi'an: Xi'an University of Architecture and Technology, 2023 (in Chinese). [59] KAYA-ÖZKIPER K, UZUN A, SOYER-UZUN S. Red mud- and metakaolin-based geopolymers for adsorption and photocatalytic degradation of methylene blue: towards self-cleaning construction materials[J]. Journal of Cleaner Production, 2021, 288: 125120. [60] SANG M M, ZHAO H Z, LI Y, et al. The adsorption properties of steel slag-based porous geopolymer for Cu2+ removal[J]. Minerals Engineering, 2023, 201: 108225. [61] CARVALHEIRAS J A, NOVAIS R M, LABRINCHA J A A. Metakaolin/red mud-derived geopolymer monoliths: novel bulk-type sorbents for lead removal from wastewaters[J]. Applied Clay Science, 2023, 232: 106770. [62] AL-ZBOON K, AL-HARAHSHEH M S, HANI F B. Fly ash-based geopolymer for Pb removal from aqueous solution[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 414-421. [63] YU Z F, SONG W F, LI J Y, et al. Improved simultaneous adsorption of Cu(II) and Cr(VI) of organic modified metakaolin-based geopolymer[J]. Arabian Journal of Chemistry, 2020, 13(3): 4811-4823. [64] 陆 艳, 罗中秋, 周新涛, 等. 铜渣铁基类沸石地质聚合物吸附Pb2+、Cu2+、Zn2+性能及机理[J]. 精细化工, 2023, 40(12): 2739-2751. LU Y, LUO Z Q, ZHOU X T, et al. Properties and mechanism of adsorption of Pb2+, Cu2+ and Zn2+ by copper slag iron-based zeolite geopolymers[J]. Fine Chemicals, 2023, 40 (12): 2739-2751 (in Chinese). [65] ONUTAI S, KOBAYASHI T, THAVORNITI P, et al. Porous fly ash-based geopolymer composite fiber as an adsorbent for removal of heavy metal ions from wastewater[J]. Materials Letters, 2019, 236: 30-33. [66] LIU Y, ZHAO S H, QIU X M, et al. Clinoptilolite based zeolite-geopolymer hybrid foams: potential application as low-cost sorbents for heavy metals[J]. Journal of Environmental Management, 2023, 330: 117167. [67] 屈 湃. 粉煤灰基地质聚合物陶粒的制备及吸附性能研究[D]. 太原: 太原理工大学, 2022. QU P. Preparation and adsorption properties of fly ash-based geopolymer ceramsite[D]. Taiyuan: Taiyuan University of Technology, 2022 (in Chinese). [68] 宋学锋, 王 楠. 原位合成LDHs@地聚物复合材料的矿物组成及其除磷效果[J]. 材料导报, 2024, 38(8): 111-116. SONG X F, WANG N. Mineral composition and phosphorus removal effect of in-situ synthesis of LDHs@geopolymer composites [J]. Material Reports, 2024, 38(8): 111-116 (in Chinese). [69] 魏 静, 郑小刚, 张国维, 等. 官厅水库、密云水库上游流域地表水氮磷含量现状[J]. 环境工程, 2020, 38(9): 101-105+144. WEI J, ZHENG X G, ZHANG G W, et al. Current status of nitrogen and phosphorus content in surface water in the upper reaches of Guanting Reservoir and Miyun Reservoir[J]. Environmental Engineering, 2020, 38(9): 101-105+144 (in Chinese). [70] 丁 浩. 自支撑粉煤灰基多孔吸附材料的制备及其脱氮除磷效果[D]. 西安: 西安建筑科技大学, 2021. DING H. Preparation of self-supporting fly ash-based porous adsorption material and its nitrogen and phosphorus removal effect[D]. Xi'an: Xi'an University of Architecture and Technology, 2021 (in Chinese). [71] 魏逸明. 自支撑钢渣基多孔吸附材料的制备及其脱氮除磷效果研究[D]. 西安: 西安建筑科技大学, 2021. WEI Y M. Preparation of self-supporting steel slag-based porous adsorption material and its nitrogen and phosphorus removal effect[D]. Xi'an: Xi'an University of Architecture and Technology, 2021 (in Chinese). [72] SALAM M A, MOKHTAR M, ALBUKHARI S M, et al. Synthesis of zeolite/geopolymer composite for enhanced sequestration of phosphate (PO3-4) and ammonium (NH+4) ions; equilibrium properties and realistic study[J]. Journal of Environmental Management, 2021, 300: 113723. [73] LUUKKONEN T, VĔŽNÍKOVÁ K, TOLONEN E T, et al. Removal of ammonium from municipal wastewater with powdered and granulated metakaolin geopolymer[J]. Environmental Technology, 2018, 39(4): 414-423. [74] SANGUANPAK S, WANNAGON A, SAENGAM C, et al. Porous metakaolin-based geopolymer granules for removal of ammonium in aqueous solution and anaerobically pretreated piggery wastewater[J]. Journal of Cleaner Production, 2021, 297: 126643. [75] MEDRI V, PAPA E, LANDI E, et al. Ammonium removal and recovery from municipal wastewater by ion exchange using a metakaolin K-based geopolymer[J]. Water Research, 2022, 225: 119203. |
[1] | 余金虎, 李强, 刘学应, 周曙光, 王超. 地质聚合物混凝土抗氯离子渗透性能研究进展[J]. 硅酸盐通报, 2024, 43(7): 2503-2513. |
[2] | 吴求刚, 赵恒, 刘威, 王新富, 王彦君, 何建国, 章梅, 朱孛. 自燃煤矸石基地质聚合物低强度注浆材料的制备及其微观分析[J]. 硅酸盐通报, 2024, 43(7): 2539-2547. |
[3] | 彭丽娟, 柯国军, 宋百姓, 蒋恬, 王文青. 废玻璃粉-偏高岭土地质聚合物胶砂的流动度和力学性能[J]. 硅酸盐通报, 2024, 43(6): 2168-2175. |
[4] | 冷玲倻, 张鹏飞, 梁文文. 高温下玄武岩纤维增强地质聚合物混凝土的动态压缩力学行为[J]. 硅酸盐通报, 2024, 43(3): 914-921. |
[5] | 郭威, 庞来学, 王文超, 张佳丽, 王华, 白书霞. 粉煤灰无溶剂法合成方钠石新方法及效果验证[J]. 硅酸盐通报, 2024, 43(2): 584-592. |
[6] | 潘荣祥, 杨敏, 袁宏. 减水剂对赤泥-粉煤灰基地质聚合物性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3212-3220. |
[7] | 张顶飞, 吕启航, 张鹏, 朱珍, 陈向南, 曹吉昌. 基于响应面法的粉煤灰-电石渣地质聚合物固化软土试验研究[J]. 硅酸盐通报, 2023, 42(8): 2821-2829. |
[8] | 刘佳宁, 洪梅, 魏涛, 陈日, 宋博宇. CTAB改性地质聚合物对地下污染源的阻截作用[J]. 硅酸盐通报, 2023, 42(5): 1831-1840. |
[9] | 陈娅, 万小梅, 崔允铮, 李辉. 纤维表面改性对EGC力学性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1174-1182. |
[10] | 刘景锦, 罗昊鹏, 雷华阳, 郑刚, 程雪松. 碱激发地质聚合物固化软土的研究进展[J]. 硅酸盐通报, 2023, 42(2): 565-574. |
[11] | 赖金, 罗琦, 王文耀, 黄文昊, 刘峰岳, 庄荣传, 汪峻峰. 中和渣基地质聚合物的制备与性能表征[J]. 硅酸盐通报, 2023, 42(11): 3978-3987. |
[12] | 安赛, 王宝民, 陈文秀, 王晓军. 矿渣-电石渣基地质聚合物的性能及作用机制[J]. 硅酸盐通报, 2023, 42(11): 3996-4005. |
[13] | 吴建勋, 蒋健, 杨永浩, 孔宇, 詹欣源, 罗志浩, 陈亮. 灰渣-凝灰岩基地质聚合物力学性能研究[J]. 硅酸盐通报, 2023, 42(11): 4072-4081. |
[14] | 贺敏, 仰宗宝, 李兆超, 欧志华, 欧蔓丽, Tony Yang. 酸激发地质聚合物反应机理与力学性能研究进展[J]. 硅酸盐通报, 2023, 42(10): 3579-3593. |
[15] | 孙奇娜, 张伊涵, 许嘉谦, 马军, 曹海莹. 基于文献计量的粉煤灰基地质聚合物研究趋势[J]. 硅酸盐通报, 2023, 42(10): 3594-3604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||