硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (10): 3824-3833.
宋子锋, 王晨, 张勇
收稿日期:
2024-03-15
修订日期:
2024-04-22
出版日期:
2024-10-15
发布日期:
2024-10-16
通信作者:
张 勇,博士,教授。E-mail:yzhang@mail.tsinghua.edu.cn
作者简介:
宋子锋(1997—),男,博士研究生。主要从事核反应堆玻璃材料的研究。E-mail:szf23@mails.tsinghua.edu.cn
基金资助:
SONG Zifeng, WANG Chen, ZHANG Yong
Received:
2024-03-15
Revised:
2024-04-22
Published:
2024-10-15
Online:
2024-10-16
摘要: 玻璃材料具备高化学稳定性和高辐照稳定性,同时还具备高折射率以及高透光性的光学特性,这使玻璃基中子及γ射线屏蔽材料有望成为同时实现辐射屏蔽以及视觉监控的独特材料。本文从中子辐射及γ射线辐射屏蔽机理入手,结合蒙特卡罗法介绍了屏蔽材料设计思路及手段,以及多种玻璃基屏蔽材料研究现状。铅玻璃由于高毒性正逐步被淘汰,而硅酸盐、硼酸盐、硼硅酸盐等无铅玻璃已成为工业市场的主流。通过向玻璃中掺入重金属化合物(如Bi2O3、BaO)和稀土元素(如La、Gd),可以有效增加质量衰减系数并降低半值层,从而显著提升其屏蔽效果,但是这种掺杂方式可能会对材料的机械性能产生不利影响。此外,本文还比较了玻璃基屏蔽材料与其他类型屏蔽材料的优劣。进一步提升玻璃基屏蔽材料的综合性能,以及开发既环保又智能的新型屏蔽材料,对于推动屏蔽技术的进步与应用具有重大意义。
中图分类号:
宋子锋, 王晨, 张勇. 玻璃基中子及γ射线屏蔽材料研究进展[J]. 硅酸盐通报, 2024, 43(10): 3824-3833.
SONG Zifeng, WANG Chen, ZHANG Yong. Research Progress on Glass-Based Neutron and Gamma-Ray Shielding Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3824-3833.
[1] ABRAM T, ION S. Generation-IV nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330. [2] ADAMANTIADES A, KESSIDES I. Nuclear power for sustainable development: current status and future prospects[J]. Energy Policy, 2009, 37(12): 5149-5166. [3] BROADHEAD B L, TANG J S, CHILDS R L, et al. Evaluation of shielding analysis methods in spent-fuel cask environments[J]. Nuclear Technology, 1997, 117(2): 206-222. [4] YUE K, LUO W Y, DONG X Q, et al. A new lead-free radiation shielding material for radiotherapy[J]. Radiation Protection Dosimetry, 2009, 133(4): 256-260. [5] NAITO M, KITAMURA H, KOIKE M, et al. Applicability of composite materials for space radiation shielding of spacecraft[J]. Life Sciences in Space Research, 2021, 31: 71-79. [6] MUTSCHELLER A. Physical standards of protection against roent-gen-ray dangers[J]. American Journal of Roentgenology, 1925(13): 65-70. [7] TSOULFANIDIS N. Nuclear energy[M]. New York: Springer, 2013. [8] ELMAHROUG Y, TELLILI B, SOUGA C. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials[J]. Annals of Nuclear Energy, 2015, 75: 268-274. [9] MCALISTER D R. Gamma ray attenuation properties of common shielding materials[DB/OL]. (2018-06-18) [2024-03-12]. https://www.researchgate.net/publication/266500546_Gamma_Ray_Attenuation_Properties_of_Common_Shielding_Materials. [10] GOLDSMITH H H, IBSER H W, FELD B T. Neutron cross sections of the elements a compilation[J]. Reviews of Modern Physics, 1947, 19(4): 259-297. [11] BIJANU A, ARYA R, AGRAWAL V, et al. Metal-polymer composites for radiation protection: a review[J]. Journal of Polymer Research, 2021, 28(10): 392. [12] MORE C V, ALSAYED Z, BADAWI M S, et al. Polymeric composite materials for radiation shielding: a review[J]. Environmental Chemistry Letters, 2021, 19(3): 2057-2090. [13] 朱奇健. 不同材料对中子射线的屏蔽效果研究[J]. 海峡科学, 2023(8): 35-39. ZHU Q J. Study on shielding effect of different materials to neutron rays[J]. Straits Science, 2023(8): 35-39 (in Chinese). [14] ADAIR R K. Neutron cross sections of the elements[J]. Reviews of Modern Physics, 1950, 22(3): 249-289. [15] AUMAN M, BRADY F P, JUNGERMAN J A, et al. Neutron total cross sections of the light elements in the energy range 24-60 MeV[J]. Physical Review C, 1972, 5(1): 1-5. [16] BECKER R L, BARSCHALL H H. Total cross sections of light elements for (α,n) neutrons[J]. Physical Review, 1956, 102(5): 1384-1389. [17] HAYASHI T, TOBITA K, NAKAMORI Y, et al. Advanced neutron shielding material using zirconium borohydride and zirconium hydride[J]. Journal of Nuclear Materials, 2009, 386/387/388: 119-121. [18] YILMAZ S N, AKBAY K, ÖZDEMIR T. A metal-ceramic-rubber composite for hybrid gamma and neutron radiation shielding[J]. Radiation Physics and Chemistry, 2021, 180: 109316. [19] GAN B, LIU S C, HE Z, et al. Research progress of metal-based shielding materials for neutron and gamma rays[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1609-1617. [20] WILLS A G, SCHÖN T B. Sequential Monte Carlo: a unified review[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6: 159-182. [21] HUNG Y C. A review of Monte Carlo and quasi-Monte Carlo sampling techniques[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2024, 16(1): e1637. [22] 蔡晓波, 申会堂. 蒙特卡罗方法、核模拟程序MCNP及MCNP在核测井中的应用[J]. 舰船科学技术, 2003, 25(增刊1): 58-61. CAI X B, SHEN H T. Application of Monte Carlo method, nuclear simulation program MCNP and MCNP in nuclear logging[J]. Ship Science and Technology, 2003, 25(supplement 1): 58-61 (in Chinese). [23] NAGAMINE S, FUJIBUCHI T, UMEZU Y, et al. Estimation of ambient dose equivalent distribution in the 18F-FDG administration room using Monte Carlo simulation[J]. Radiological Physics and Technology, 2017, 10(1): 121-128. [24] SOLBERG T D, DEMARCO J J, CHETTY I J, et al. A review of radiation dosimetry applications using the MCNP Monte Carlo code[J]. Radiochimica Acta, 2001, 89(4/5): 337-355. [25] 彭礼韬. MCNP和Geant4在伽马测井领域的应用对比研究[D]. 北京: 华北电力大学, 2021: 10-13. PENG L T. Comparative study on the application of MCNP and Geant4 in well logging[D]. Beijing: North China Electric Power University, 2021: 10-13 (in Chinese). [26] CAI Y Y, HU K J, LI S H, et al. Structure optimization of electrical penetration assemblies: experimental facts and stress field analysis by the finite element method[J]. Materialia, 2022, 22: 101381. [27] GONG K Q, CAI Y Y, LIU Z, et al. Thermal cycle stability of glass-to-metal seals with glass preforms produced via powder-metallurgy and casting-machining methods[J]. Materials Research Express, 2023, 10(2): 025201. [28] 张多飞. Xe离子、电子辐照导致硼硅酸盐玻璃机械性能变化及钙钛锆石玻璃陶瓷制备工艺研究[D]. 兰州: 兰州大学, 2017: 3-5. ZHANG D F. Study on the mechanical properties of borosilicate glass induced by Xe ions and electrons irradiation and the preparation of zirconolite glass ceramic[D]. Lanzhou: Lanzhou University, 2017: 3-5 (in Chinese). [29] PISARSKA J, LISIECKI R, RYBA-ROMANOWSKI W, et al. Glass preparation and temperature-induced crystallization in multicomponent B2O3-PbX2-PbO-Al2O3-WO3-Dy2O3 (X=F, Cl, Br) system[J]. Journal of Non-Crystalline Solids, 2011, 357(3): 1228-1231. [30] 孟国龙, 李玉香, 吴 浪, 等. CaO-ZrO2-TiO2-Al2O3-B2O3-SiO2玻璃陶瓷的制备及化学稳定性研究[J]. 西南科技大学学报, 2012, 27(2): 9-13. MENG G L, LI Y X, WU L, et al. Preparation and chemical durability of CaO-ZrO2-TiO2-Al2O3-B2O3-SiO2 glass-ceramics[J]. Journal of Southwest University of Science and Technology, 2012, 27(2): 9-13 (in Chinese). [31] LI C W, ZHANG P P, LI D W. Study on low-cost preparation of glass-ceramic from municipal solid waste incineration (MSWI) fly ash and lead-zinc tailings[J]. Construction and Building Materials, 2022, 356: 129231. [32] 冀 翔, 张行泉, 霍冀川, 等. 掺Nd2O3硼硅酸盐玻璃陶瓷制备及其显微结构[J]. 西南科技大学学报, 2019, 34(3): 8-12. JI X, ZHANG X Q, HUO J C, et al. Preparation and microstructure of Nd2O3-doped borosilicate glass ceramics[J]. Journal of Southwest University of Science and Technology, 2019, 34(3): 8-12 (in Chinese). [33] 魏 鑫, 焦 芬, 刘 维, 等. 垃圾飞灰与粉煤灰协同熔融制备 CAS 体系微晶玻璃的研究[J]. 材料导报, 2024, 39(1): 23120096. WEI X, JIAO F, LIU W, et al. Study on preparation of CAS glass-ceramics by collaborative melting of MSWI fly ash and coal fly ash[J]. Materials Reports, 2024, 39(1): 23120096 (in Chinese). [34] 张春飞, 赵吕菲. 飞灰和粉煤灰烧结制备微晶玻璃性能研究[J]. 环境科学与管理, 2024, 49(2): 70-74. ZHANG C F, ZHAO L F. Study on properties of glass ceramics prepared by sintering fly ash and coal fly ash[J]. Environmental Science and Management, 2024, 49(2): 70-74 (in Chinese). [35] ALSAIF N A M, ELSAD R A, SADEQ M S, et al. Antimony (III) oxide-reinforced lithium-calcium borate glasses: preparation and characterization of physical, optical, and γ-ray shielding behavior through experimental and theoretical methods[J]. Journal of Electronic Materials, 2022, 51(10): 5869-5879. [36] 刘 潇. 镨离子掺杂锗碲酸盐玻璃的光学与光谱特性[D]. 大连: 大连工业大学, 2014: 1-3. LIU X. Optical and spectral properties of praseodymium ions doped germanium tellurite glasses[D]. Dalian: Dalian Polytechnic University, 2014: 1-3 (in Chinese). [37] 李秀英, 陶歆月, 肖卓豪, 等. 高稳定性SrF2-Na2O-Fe2O3-P2O5体系氟磷酸盐玻璃的制备与表征[J]. 硅酸盐通报, 2022, 41(10): 3699-3707. LI X Y, TAO X Y, XIAO Z H, et al. Preparation and characterization of high stability SrF2-Na2O-Fe2O3-P2O5 system fluorphosphate glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3699-3707 (in Chinese). [38] RAMESH K. Rapid quenching and glass formation in chalcogenide glasses: preparation and properties of Ge-As-Te glasses over an extended composition ranges[J]. Journal of Non-Crystalline Solids, 2009, 355(37/38/39/40/41/42): 2045-2049. [39] BAO W, YU X M, WANG T, et al. Tb3+/Eu3+ co-doped Al2O3-B2O3-SrO glass ceramics: preparation, structure and luminescence properties[J]. Optical Materials, 2021, 122: 111772. [40] 彭 可, 付华龙, 于天宇, 等. 3D打印制备金属盐掺杂熔石英玻璃[J]. 硅酸盐学报, 2024, 52(5): 1562-1569. PENG K, FU H L, YU T Y, et al. 3D printing fabrication of metal salt-doped fused silica glass[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1562-1569 (in Chinese). [41] 朱治昱, 焦 艳, 邵冲云, 等. γ辐照及热退火对光热折变玻璃光学性能的影响[J]. 无机材料学报, 2021, 36(5): 521-526. ZHU Z Y, JIAO Y, SHAO C Y, et al. Effects of γ-irradiation and thermal annealing on photo-thermal-refractive glass[J]. Journal of Inorganic Materials, 2021, 36(5): 521-526 (in Chinese). [42] 王 晶. 大尺寸石英玻璃冷却过程动态优化[D]. 武汉: 华中科技大学, 2019: 21-29. WANG J. Dynamic optimization of the cooling process of large quartz glass[D]. Wuhan: Huazhong University of Science and Technology, 2019: 21-29 (in Chinese). [43] 王 晶, 马千里, 刘忠义, 等. 大尺寸石英玻璃冷却过程的优化[J]. 工程热物理学报, 2020, 41(12): 3114-3121. WANG J, MA Q L, LIU Z Y, et al. Optimizing the cooling process of the quartz glass in an electric furnace[J]. Journal of Engineering Thermophysics, 2020, 41(12): 3114-3121 (in Chinese). [44] NAUS D J, OLAND C B, ELLINGWOOD B R, et al. Aging management of containment structures in nuclear power plants[J]. Nuclear Engineering and Design, 1996, 166(3): 367-379. [45] TASNIM A, SAHADATH M H, ISLAM KHAN M N. Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties[J]. Radiation Physics and Chemistry, 2021, 189: 109772. [46] OKAFOR C E, OKONKWO U C, OKOKPUJIE I P. Trends in reinforced composite design for ionizing radiation shielding applications: a review[J]. Journal of Materials Science, 2021, 56(20): 11631-11655. [47] PISCIELLA P, CRISUCCI S, KARAMANOV A, et al. Chemical durability of glasses obtained by vitrification of industrial wastes[J]. Waste Management, 2001, 21(1): 1-9. [48] SINGH V P, BADIGER N M. Investigation of gamma and neutron shielding parameters for borate glasses containing NiO and PbO[J]. Physics Research International, 2014, 2014(1): 954958. [49] ABUALROOS N J, BAHARUL A N A, ZAINON R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review[J]. Radiation Physics and Chemistry, 2019, 165: 108439. [50] MECKING O. Medieval lead glass in central Europe[J]. Archaeometry, 2013, 55(4): 640-662. [51] SINGH N, SINGH K J, SINGH K, et al. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 225(3): 305-309. [52] AL-BURIAHI M, EL-AGAWANY F, SRIWUNKUM C, et al. Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses[J]. Physica B: Physics of Condensed Matter, 2020, 581(C): 411946. [53] SINGH H, SINGH K, GERWARD L, et al. ZnO-PbO-B2O3 glasses as gamma-ray shielding materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 207(3): 257-262. [54] ZAID M H M, SIDEK H A A, MATORI K A, et al. Influence of heavy metal oxides to the mechanical and radiation shielding properties of borate and silica glass system[J]. Journal of Materials Research and Technology, 2021, 11: 1322-1330. [55] 吴早明, 庞晓轩, 刘向东, 等. 新型中子/γ射线屏蔽材料的设计和制备[J]. 化工新型材料, 2024, 52(2): 145-150. WU Z M, PANG X X, LIU X D, et al. Design and preparation of novel neutron/γ-ray shielding materials[J]. New Chemical Materials, 2024, 52(2): 145-150 (in Chinese). [56] KARPUZ N. Effect of La2O3 on Magnesium Borosilicate glasses glass for radiation shielding materials in nuclear application[J]. Radiation Physics and Chemistry, 2024, 214: 111305. [57] KURUDIREK M. Heavy metal borate glasses: potential use for radiation shielding[J]. Journal of Alloys and Compounds, 2017, 727: 1227-1236. [58] SAYYED M I, ELHOUICHET H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses[J]. Radiation Physics and Chemistry, 2017, 130: 335-342. [59] 孙 毅, 李梦晗, 王 超, 等. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(增刊2): 101-106+126. SUN Y, LI M H, WANG C, et al. Discussion on evaluation method of X/γ ray shielding performance of heavy metal oxide glass[J]. Materials Reports, 2021, 35(supplement 2): 101-106+126 (in Chinese). [60] CHANTHIMA N, KAEWKHAO J, LIMKITJAROENPORN P, et al. Development of BaO-ZnO-B2O3 glasses as a radiation shielding material[J]. Radiation Physics and Chemistry, 2017, 137: 72-77. [61] VERMA S, SANGHI S K, AMRITPHALE S S. Development of advanced, non-toxic, X-ray radiation shielding glass possessing barium, boron substituted kornerupine crystallites in the glassy matrix[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(1): 35-49. [62] SINGH S, KUMAR A, SINGH D, et al. Barium-borate-flyash glasses: As radiation shielding materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(1): 140-146. [63] OPREA I I, HESSE H, BETZLER K. Optical properties of bismuth borate glasses[J]. Optical Materials, 2004, 26(3): 235-237. [64] AL-HADEETHI Y, SAYYED M I. Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code[J]. Ceramics International, 2019, 45(18): 24858-24864. [65] AL-HADEETHI Y, TIJANI S A. The use of lead-free transparent 50BaO-(50-x)borosilicate-xBi2O3 glass system as radiation shields in nuclear medicine[J]. Journal of Alloys and Compounds, 2019, 803: 625-630. [66] SAYYED M I, TEKIN H O, ALTUNSOY E E, et al. Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code[J]. Journal of Non Crystalline Solids, 2018, 498: 167-172. [67] 李坤锋, 王子凡, 刘春雨, 等. 核屏蔽材料铅硼聚乙烯高温熔融处理研究[J]. 硅酸盐通报, 2020, 39(2): 552-555. LI K F, WANG Z F, LIU C Y, et al. High-temperature melting treatment of nuclear shielding lead-boron polyethylene[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 552-555 (in Chinese). [68] 陈泽坤, 张丽艳. 高放废液硼硅酸盐玻璃固化体热学性质和化学稳定性的统计结构模拟[J]. 硅酸盐学报, 2022, 50(5): 1301-1309. CHEN Z K, ZHANG L Y. Statistical structure modeling for thermal properties and chemical stability of borosilicate glass wasteforms with high level radioactive waste[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1301-1309 (in Chinese). [69] CHEN P, MA B G, TAN H B, et al. Utilization of Barium slag to improve chloride-binding ability of cement-based material[J]. Journal of Cleaner Production, 2021, 283: 124612. [70] 李靖威, 李敬超, 郑睿鹏, 等. 无机玻璃结构弛豫及影响因素综述[J]. 硅酸盐通报, 2024, 43(2): 682-694. LI J W, LI J C, ZHENG R P, et al. Review of structural relaxation and influencing factors of inorganic glass[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 682-694 (in Chinese). [71] 张宇轩, 马 瑞, 崔秀涛, 等. 硼硅酸盐核废料玻璃在深地质处置过程中腐蚀机理研究进展[J]. 硅酸盐学报, 2024, 52(5): 1749-1760. ZHANG Y X, MA R, CUI X T, et al. Corrosion mechanism of borosilicate nuclear waste glass during deep geological disposal: a short review[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1749-1760 (in Chinese). [72] SOPAPAN P, LAOPAIBOON J, JAIBOON O, et al. Feasibility study of recycled CRT glass on elastic and radiation shielding properties used as X-ray and gamma-ray shielding materials[J]. Progress in Nuclear Energy, 2020, 119: 103149. [73] VANI P, VINITHA G, SAYYED M I, et al. Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses[J]. Nuclear Engineering and Technology, 2021, 53(12): 4106-4113. [74] BOODAGHI MALIDARRE R, AKKURT I. A Monte Carlo study on attenuation characteristics of colemanite- and barite-containing resources irradiated by 252Cf source against neutron-gamma photon[J]. Polymer Bulletin, 2022, 79(9): 7843-7870. [75] 鲁义东, 霍志鹏, 钟国强, 等. 稀土基中子和伽马复合屏蔽材料[J]. 化学进展, 2023, 35(8): 1214-1228. LU Y D, HUO Z P, ZHONG G Q, et al. Rare earth based neutron and gamma composite shielding materials[J]. Progress in Chemistry, 2023, 35(8): 1214-1228 (in Chinese). [76] SHAABAN K S, ALYOUSEF H A, ABD EL-REHIM A F. CeO2 reinforced B2O3-SiO2-MoO3 glass system: a characterization study through physical, mechanical and gamma/neutron shields characteristics[J]. Silicon, 2022, 14(17): 12001-12012. [77] 罗 庆. 含钆磷酸盐玻璃辐射屏蔽材料的结构研究[D]. 绵阳: 西南科技大学, 2017: 19-40. LUO Q. Research of structure of gadolinium phosphate glass radiation shielding material[D]. Mianyang: Southwest University of Science and Technology, 2017: 19-40 (in Chinese). [78] SHAMSHAD L, ROOH G, LIMKITJAROENPORN P, et al. A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials[J]. Progress in Nuclear Energy, 2017, 97: 53-59. [79] KAEWJANG S, MAGHANEMI U, KOTHAN S, et al. New gadolinium based glasses for gamma-rays shielding materials[J]. Nuclear Engineering and Design, 2014, 280: 21-26. [80] KAEWJAENG S, KOTHAN S, CHANTHIMA N, et al. Gamma radiation shielding materials of lanthanum calcium silicoborate glasses[J]. Materials Today: Proceedings, 2018, 5(7): 14901-14906. [81] BOODAGHI M R, AKKURT I. The influence of Nd2O3 on the radiation shielding, physical, mechanical, and acoustic properties of the (75-x)TeO2-15MgO-10Na2O-xNd2O3 glasses as a potent radiation shielding material[J]. Polymer Composites, 2022, 43(8): 5418-5425. |
[1] | 甘学彧, 陈帅, 耿海宁, 李宗刚, 马浩森, 陈伟, 侯硕, 李秋. 改性高浓度硼酸溶液对蛇纹石屏蔽混凝土力学性能与中子屏蔽性能的影响[J]. 硅酸盐通报, 2024, 43(6): 2047-2055. |
[2] | 侯焕然, 石晓飞, 金扬利, 王衍行, 李媛媛, 祖成奎. 超薄金属基电磁屏蔽玻璃研究进展[J]. 硅酸盐通报, 2024, 43(4): 1197-1210. |
[3] | 周宗可, 覃宗华, 万泉, 聂信, 于文彬. 勃姆石对稀土离子的吸附性研究[J]. 硅酸盐通报, 2023, 42(5): 1688-1695. |
[4] | 史扬帆, 潘勇, 高扬, 迟蓬涛, 陈思安. 超高温陶瓷及其复合材料的稀土改性研究进展[J]. 硅酸盐通报, 2023, 42(2): 682-693. |
[5] | 汪跃群, 项光磊, 高亮. Sm掺杂Pb(Mg1/3Nb2/3)O3-PZT压电陶瓷的研究[J]. 硅酸盐通报, 2022, 41(4): 1433-1439. |
[6] | 郭晨, 杨利青, 万瑞, 关永帽, 陈超, 王鹏飞. 电磁屏蔽玻璃研究与发展现状[J]. 硅酸盐通报, 2022, 41(11): 4021-4035. |
[7] | 韩建军, 廖党, 席壮民, 唐海超, 代崇阳, 吕亚军, 苗壮. 磁铁矿防辐射超高性能混凝土制备及性能研究[J]. 硅酸盐通报, 2021, 40(9): 2930-2938. |
[8] | 戈榕;张衍;刘育建;方俊;栾伟玲. 稀土助剂Gd2O3对W/Al2O3复合陶瓷烧结性能、力学性能和屏蔽性能的影响[J]. 硅酸盐通报, 2016, 35(8): 2346-2352. |
[9] | 王艳;张俊吉;祝启涛;许志忠. 稀土元素Ca位掺杂CaMnO3材料的热电性能研究进展[J]. 硅酸盐通报, 2016, 35(6): 1738-1743. |
[10] | 杨杰;谢光银. ZnAlCe三元类水滑石的制备及对亚甲基蓝的催化降解性能[J]. 硅酸盐通报, 2014, 33(4): 974-979. |
[11] | 朱浩波;李玲霞;吴霞宛;王洪儒;张志萍. 稀土元素及金属氧化物掺杂对BaTiO3系统耐压性能的影响[J]. 硅酸盐通报, 2004, 23(3): 104-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||