[1] CHEN X Y, WANG S Y, ZHOU Y X, et al. Improved low-carbon magnesium oxysulfate cement pastes containing boric acid and citric acid[J]. Cement and Concrete Composites, 2022, 134: 104813. [2] PUERTAS F, GIL-MAROTO A, PALACIOS M, et al. Morteros de escoria activada alcalinamente reforzados con fibra de vidrio AR[J]. Materiales De Construcción, 2006, 56(283): 79-90. [3] POURBAIX M. Thermodynamics and corrosion[J]. Corrosion Science, 1990, 30(10): 963-988. [4] POURBAIX M. Applications of electrochemistry in corrosion science and in practice[J]. Corrosion, 1974, 14(1): 25-82. [5] MUNDRA S, CRIADO M, BERNAL S A, et al. Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes[J]. Cement and Concrete Research, 2017, 100: 385-397. [6] ANGST U, ELSENER B, LARSEN C K, et al. Critical chloride content in reinforced concrete: a review[J]. Cement and Concrete Research, 2009, 39(12): 1122-1138. [7] 杜玉娇. 碱激发混凝土中的钢筋锈蚀研究[D]. 青岛: 青岛理工大学, 2018. DU Y J. Corrosion behavour of reinforcement in alkali activated concrete[D]. Qingdao: Qingdao Tehcnology University, 2018 (in Chinese). [8] WANG Y, CHEN R, HU J, et al. Surface characteristics and electrochemical behaviors of passive reinforcing steel in alkali-activated slag[J]. Corrosion Science, 2021, 190: 109657. [9] WAN X M, WITTMANN F H, ZHAO T J, et al. Chloride content and pH value in the pore solution of concrete under carbonation[J]. Journal of Zhejiang University Science A, 2013, 14(1): 71-78. [10] MCPOLIN D O, BASHEER P A, LONG A E. Carbonation and pH in mortars manufactured with supplementary cementitious materials[J]. Journal of Materials in Civil Engineering, 2009, 21(5): 217-225. [11] WANG W R, CHEN H S, LI X Y, et al. Corrosion behavior of steel bars immersed in simulated pore solutions of alkali-activated slag mortar[J]. Construction and Building Materials, 2017, 143: 289-297. [12] ISMAIL I, BERNAL S A, PROVIS J L, et al. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes[J]. Construction and Building Materials, 2013, 48: 1187-1201. [13] 施锦杰, 孙 伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4): 452-458. SHI J J, SUN W, GENG G Q. Influence of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials, 2011, 14(4): 452-458 (in Chinese). [14] GHODS P, BURKAN ISGOR O, BENSEBAA F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution[J]. Corrosion Science, 2012, 58: 159-167. [15] 王培铭, 庞 敏, 刘贤萍. 浸水养护下混合水泥浆体孔溶液pH值对钢筋锈蚀的影响[J]. 硅酸盐学报, 2015, 43(2): 152-158. WANG P M, PANG M, LIU X P. Effect of pH value of pore solution on corrosion-resistance of steel bar in blended cement mortar under water curing condition[J]. Journal of the Chinese Ceramic Society, 2015, 43(2): 152-158 (in Chinese). [16] SHI J J, MING J, SUN W. Electrochemical performance of reinforcing steel in alkali-activated slag extract in the presence of chlorides[J]. Corrosion Science, 2018, 133: 288-299. [17] 施锦杰, 孙 伟, 耿国庆. 碳化对模拟混凝土孔溶液中HRB335钢腐蚀行为的影响[J]. 金属学报, 2011, 47(1): 17-24. SHI J J, SUN W, GENG G Q. Influence of carbonation on the corrosion performance of steel HRB335 in simulated concrete pore solution[J]. Acta Metallurgica Sinica, 2011, 47(1): 17-24 (in Chinese). |