硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (8): 2711-2725.
• 水泥混凝土 • 下一篇
周健, 李伟华, 皮振宇, 徐名凤, 李辉, 聂松
收稿日期:
2023-12-28
修订日期:
2024-02-04
出版日期:
2024-08-15
发布日期:
2024-08-12
通信作者:
皮振宇,博士,讲师。E-mail:zhenyupi@163.com
作者简介:
周 健(1982—),男,教授。主要从事新型胶凝材料的矿物设计与性能调控的研究。E-mail:zhoujian@hebut.edu.cn
基金资助:
ZHOU Jian, LI Weihua, PI Zhenyu, XU Mingfeng, LI Hui, NIE Song
Received:
2023-12-28
Revised:
2024-02-04
Online:
2024-08-15
Published:
2024-08-12
摘要: 碳化是复杂的物理化学过程,主要包括二氧化碳(CO2)在水泥混凝土中的扩散、溶解和与可碳化物质的反应,最终造成水泥混凝土碱性的降低和钢筋的锈蚀,显著影响其耐久性能。硫铝酸盐水泥(CSA)具有快硬早强、耐硫酸盐腐蚀性能优异等特点,但其抗碳化性能较差,易导致水泥内部化学组成的改变和微观结构的劣化,最终将严重危害基础设施的正常服役。因此,明晰影响CSA碳化的因素,揭示CSA碳化机理具有重要的工程和科研意义。首先从CSA的水化产物出发,介绍了三硫型水化硫铝酸钙(AFt)、单硫型水化硫铝酸钙(AFm)及水化硅酸钙(C-S-H)的碳化机理;其次分析了材料因素对CSA抗碳化性能的影响;最后综述了CO2矿化养护对CSA性能的提升作用,总结了目前CSA碳化研究的不足,为进一步研究CSA抗碳化性能提升方法和碳化利用方式提出了建议。
中图分类号:
周健, 李伟华, 皮振宇, 徐名凤, 李辉, 聂松. 硫铝酸盐水泥基材料抗碳化性能研究进展[J]. 硅酸盐通报, 2024, 43(8): 2711-2725.
ZHOU Jian, LI Weihua, PI Zhenyu, XU Mingfeng, LI Hui, NIE Song. Research Progress on Carbonation Resistance of Calcium Sulfoaluminate Cement-Based Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2711-2725.
[1] NEGRÃO L B A, PÖLLMANN H, DA COSTA M L. Production of low-CO2 cements using abundant bauxite overburden “Belterra Clay”[J]. Sustainable Materials and Technologies, 2021, 29: e00299. [2] GLASSER F, ZHANG L. High-performance cement matrices based on calcium sulfoaluminate-belite compositions[J]. Cement and Concrete Research, 2001, 31(12): 1881-1886. [3] CHEN I A, JUENGER M C G. Incorporation of coal combustion residuals into calcium sulfoaluminate-belite cement clinkers[J]. Cement and Concrete Composites, 2012, 34(8): 893-902. [4] GARCÍA-MATÉ M, DE LA TORRE A G, LEÓN-REINA L, et al. Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement[J]. Cement and Concrete Composites, 2015, 55: 53-61. [5] PÉRA J, AMBROISE J. New applications of calcium sulfoaluminate cement[J]. Cement and Concrete Research, 2004, 34(4): 671-676. [6] LI P, GAO X, WANG K, et al. Hydration mechanism and early frost resistance of calcium sulfoaluminate cement concrete[J]. Construction and Building Materials, 2020, 239: 117862. [7] 王成启, 林 东, 张章龙. 硫铝酸盐水泥对快速施工海工混凝土性能的影响[J]. 中国港湾建设, 2020, 40(4): 26-30. WANG C Q, LIN D, ZHANG Z L. Effect of sulphoaluminate cement on performance of marine engineering concrete for rapid construction[J]. China Harbour Engineering, 2020, 40(4): 26-30 (in Chinese). [8] PELLETIER-CHAIGNAT L, WINNEFELD F, LOTHENBACH B, et al. Influence of the calcium sulphate source on the hydration mechanism of Portland cement-calcium sulphoaluminate clinker-calcium sulphate binders[J]. Cement and Concrete Composites, 2011, 33(5): 551-561. [9] TAN B W, OKORONKWO M U, KUMAR A, et al. Durability of calcium sulfoaluminate cement concrete[J]. Journal of Zhejiang University: Science A, 2020, 21(2): 118-128. [10] JUENGER M, WINNEFELD F, PROVIS J, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2010, 41(12): 1232-1243. [11] 李永贤. 混凝土碳化的危害、原因及防治[J]. 交通标准化, 2011, 39(12): 192-195. LI Y X. Hazards, causes and prevention of concrete carbonization[J]. Transport Standardization, 2011, 39(12): 192-195 (in Chinese). [12] 申爱琴. 水泥与水泥混凝土[M]. 北京: 人民交通出版社, 2000: 207-213. SHEN A Q. Cement and cement concrete[M]. Beijing: China Communications Press, 2000: 207-213 (in Chinese). [13] YOU X, HU X, HE P, et al. A review on the modelling of carbonation of hardened and fresh cement-based materials[J]. Cement and Concrete Composites, 2022, 125: 104315. [14] MORANDEAU A, THIÉRY M, DANGLA P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties[J]. Cement and Concrete Research, 2014, 56: 153-170. [15] LI Y Q, LIU W, XING F, et al. Carbonation of the synthetic calcium silicate hydrate (C-S-H) under different concentrations of CO2: chemical phases analysis and kinetics[J]. Journal of CO2 Utilization, 2020, 35: 303-313. [16] THIERY M, VILLAIN G, DANGLA P, et al. Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics[J]. Cement and Concrete Research, 2007, 37(7): 1047-1058. [17] PETER M A, MUNTEAN A, MEIER S A, et al. Competition of several carbonation reactions in concrete: a parametric study[J]. Cement and Concrete Research, 2008, 38(12): 1385-1393. [18] 李姗姗. 水泥石碳化性能的影响因素及其机理研究[D]. 重庆: 重庆大学, 2014. LI S S. The influence factors and the mechanism of the carbonation of hardened cement pastes[D]. Chongqing: Chongqing University, 2014 (in Chinese). [19] 王燕谋, 苏幕珍, 张 量. 硫铝酸盐水泥[M]. 北京: 北京工业大学出版社, 1999: 149-178. WANG Y M, SU M Z, ZHANG L. Sulphoaluminate cement[M]. Beijing: Beijing University of Technology Press, 1992: 149-178 (in Chinese). [20] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). [21] NISHIKAWA T, SUZUKI K, ITO S, et al. Decomposition of synthesized ettringite by carbonation[J]. Cement and Concrete Research, 1992, 22(1): 6-14. [22] NDIAYE K, CYR M, GINESTET S. Durability and stability of an ettringite-based material for thermal energy storage at low temperature[J]. Cement and Concrete Research, 2017, 99: 106-115. [23] PLANK J, ZHANG-PREßE M, IVLEVA N, et al. Stability of single phase C3A hydrates against pressurized CO2[J]. Construction and Building Materials, 2016, 122: 426-434. [24] GROUNDS T, G MIDGLEY H, NOVELL D V. Carbonation of ettringite by atmospheric carbon dioxide[J]. Thermochimica Acta, 1988, 135: 347-352. [25] STEINER S, LOTHENBACH B, PROSKE T, et al. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite[J]. Cement and Concrete Research, 2020, 135: 106116. [26] 邹瑞珍, 陈贤拓. 钙矾石二氧化碳分解反应的动力学研究[J]. 河北科技大学学报, 1991, 12(1): 42-48. ZOU R Z, CHEN X T. A kinetic study on the CO2 decomposition reaction of ettringite[J]. Journal of Hebei University of Science and Technology, 1991, 12(1): 42-48 (in Chinese). [27] 陈贤拓, 邹瑞珍, 陈霄榕, 等. 钙矾石晶体内部碳化过程物理模型的研究[J]. 化学学报, 1995, 53(9): 855-860. CHEN X T, ZOU R Z, CHEN X R, et al. Studies on physical model of carbonation process in ettringite crystal[J]. Acta Chimica Sinica, 1995, 53(9): 855-860 (in Chinese). [28] COLLIER N C. Transition and decomposition temperatures of cement phases—a collection of thermal analysis data[J]. Ceramics-Silikáty, 2016, 60(4): 338-343. [29] HARGIS C W, LOTHENBACH B, MÜLLER C J, et al. Carbonation of calcium sulfoaluminate mortars[J]. Cement and Concrete Composites, 2017, 80: 123-134. [30] ZHANG Y, ÇOPUROĞLU O. The role of hydrotalcite-like phase and monosulfate in slag cement paste during atmospheric and accelerated carbonation[J]. Cement and Concrete Composites, 2022, 132: 104642. [31] MATSCHEI T, LOTHENBACH B, GLASSER F P. The AFm phase in Portland cement[J]. Cement and Concrete Research, 2007, 37(2): 118-130. [32] MESBAH A, CAU-DIT-COUMES C, FRIZON F, et al. A new investigation of the Cl--CO2-3 substitution in AFm phases[J]. Journal of the American Ceramic Society, 2011, 94(6): 1901-1910. [33] GLASSER F P, KINDNESS A, STRONACH S A. Stability and solubility relationships in AFm phases[J]. Cement and Concrete Research, 1999, 29(6): 861-866. [34] 翁开茂, 闵盘荣, 王国宾. 铝酸盐水化物碳化性能的研究[J]. 硅酸盐学报, 1989, 17(2): 173-180. WENG K M, MIN P R, WANG G B. A study on carbonation of hydrates of calcium aluminate[J]. Journal of the Chinese Ceramic Society, 1989, 17(2): 173-180 (in Chinese). [35] ZHAO J, SUN C, WANG Q, et al. Thermodynamic, mechanical, and electronic properties of ettringite and AFm phases from first-principles calculations[J]. Construction and Building Materials, 2022, 350: 128777. [36] MORANDEAU A E, WHITE C E. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel[J]. Journal of Materials Chemistry A, 2015, 3(16): 8597-8605. [37] SEVELSTED T F, SKIBSTED J. Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy[J]. Cement and Concrete Research, 2015, 71: 56-65. [38] LIU X, FENG P, CAI Y, et al. Carbonation behavior of calcium silicate hydrate (C-S-H): its potential for CO2 capture[J]. Chemical Engineering Journal, 2022, 431: 134243. [39] BLACK L, GARBEV K, GEE I. Surface carbonation of synthetic C-S-H samples: a comparison between fresh and aged C-S-H using X-ray photoelectron spectroscopy[J]. Cement and Concrete Research, 2008, 38(6): 745-750. [40] GARBEV K, STEMMERMANN P, BLACK L, et al. Structural features of C-S-H (I) and its carbonation in air—a Raman spectroscopic study. Part I: fresh phases[J]. Journal of the American Ceramic Society, 2007, 90(3): 900-907. [41] WU B, YE G. Carbonation mechanism of different kind of CSH: rate and products[C]//Int. RILEM Conference on Materials, Systems and Structures in Civil Engineering 2016-Segment on Concrete with Supplementary Cementitious Materials. Rilem, 2016: 163-272. [42] SHAH V, SCRIVENER K, BHATTACHARJEE B, et al. Changes in microstructure characteristics of cement paste on carbonation[J]. Cement and Concrete Research, 2018, 109: 184-197. [43] KANGNI-FOLI E, POYET S, LE BESCOP P, et al. Carbonation of model cement pastes: the mineralogical origin of microstructural changes and shrinkage[J]. Cement and Concrete Research, 2021, 144: 106446. [44] LU B, HUO Z, XU Q, et al. Characteristics of CSH under carbonation and its effects on the hydration and microstructure of cement paste[J]. Construction and Building Materials, 2023, 364: 129952. [45] BERTOLA F, GASTALDI D, IRICO S, et al. Influence of the amount of calcium sulfate on physical/mineralogical properties and carbonation resistance of CSA-based cements[J]. Cement and Concrete Research, 2022, 151: 106634. [46] 邵方杰. 硫铝酸盐水泥基材料的试验研究及机理分析[D]. 兰州: 兰州理工大学, 2018. SHAO F J. Experimental study and mechanism analysis of sulphoaluminate cement-based materials[D]. Lanzhou: Lanzhou University of Technology, 2018 (in Chinese). [47] 杜 鹏. 硫铝酸盐水泥基修补砂浆的研究[D]. 济南: 济南大学, 2011. DU P. Study on sulphoaluminate cement-based repair mortar[D]. Jinan: University of Jinan, 2011 (in Chinese). [48] ZHANG D C, XU D Y, CHENG X, et al. Carbonation resistance of sulphoaluminate cement-based high performance concrete[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2009, 24(4): 663-666. [49] 张德成, 张云飞, 程 新. 硫铝酸盐水泥基混凝土抗碳化性能的研究[J]. 硅酸盐通报, 2008, 27(2): 258-263. ZHANG D C, ZHANG Y F, CHENG X. Research on resisting carbonization of concrete of sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(2): 258-263 (in Chinese). [50] 段 平. 层状双氢氧化物改善混凝土耐久性能的机理及其应用研究[D]. 武汉: 武汉理工大学, 2014. DUAN P. Research on modification mechanism and the application of layered double hydroxides for durability of concrete[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese). [51] DUAN P, CHEN W, MA J, et al. Influence of layered double hydroxides on microstructure and carbonation resistance of sulphoaluminate cement concrete[J]. Construction and Building Materials, 2013, 48: 601-609. [52] BERNAL S A, NICOLAS R S, MYERS R J, et al. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders[J]. Cement and Concrete Research, 2014, 57: 33-43. [53] GASTALDI D, BERTOLA F, CANONICO F, et al. A chemical/mineralogical investigation of the behavior of sulfoaluminate binders submitted to accelerated carbonation[J]. Cement and Concrete Research, 2018, 109: 30-41. [54] 李国新, 任双倩, 安小强, 等. OPC-CSA复合修补材料的抗碳化性能研究[J]. 非金属矿, 2021, 44(3): 46-49+54. LI G X, REN S Q, AN X Q, et al. Research on anti-carbonation performance of OPC-CSA composite repair materials[J]. Non-Metallic Mines, 2021, 44(3): 46-49+54 (in Chinese). [55] WINNEFELD F, BARLAG S. Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(3): 949-957. [56] WINNEFELD F, LOTHENBACH B. Hydration of calcium sulfoaluminate cements—experimental findings and thermodynamic modelling[J]. Cement and Concrete Research, 2010, 40(8): 1239-1247. [57] TELESCA A, MARROCCOLI M, PACE M, et al. A hydration study of various calcium sulfoaluminate cements[J]. Cement and Concrete Composites, 2014, 53: 224-232. [58] IRICO S, GASTALDI D, CANONICO F, et al. Investigation of the microstructural evolution of calcium sulfoaluminate cements by thermoporometry[J]. Cement and Concrete Research, 2013, 53: 239-247. [59] BERNARDO G, TELESCA A, VALENTI G L. A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages[J]. Cement and Concrete Research, 2006, 36(6): 1042-1047. [60] LI J, CHANG J. Effect of crystal/amorphous ratio on mechanical properties in a C4A3$\overline{\mathrm{S}}$-C2S hydration system with or without gypsum addition[J]. Construction and Building Materials, 2019, 208: 36-45. [61] ZHANG L, GLASSER F P. Hydration of calcium sulfoaluminate cement at less than 24 h[J]. Advances in Cement Research, 2002, 14(4): 141-155. [62] 郝璟珂, 宋远明, 王志娟, 等. AFm阴离子类型对硫铝酸盐水泥水化产物钙矾石稳定性的影响[J]. 硅酸盐学报, 2019, 47(11): 1554-1558. HAO J K, SONG Y M, WANG Z J, et al. Effect of AFm anion type on stability of ettringite generated from calcium sulphoaluminate cement hydration[J]. Journal of the Chinese Ceramic Society, 2019, 47(11): 1554-1558 (in Chinese). [63] SCHNEIDER M. The cement industry on the way to a low-carbon future[J]. Cement and Concrete Research, 2019, 124: 105792. [64] ÖZBAY E, ERDEMIR M, DURMUŞ. Utilization and efficiency of ground granulated blast furnace slag on concrete properties: a review[J]. Construction and Building Materials, 2016, 105: 423-434. [65] MECHLING J M, LECOMTE A, ROUX A, et al. Sulfoaluminate cement behaviours in carbon dioxide, warm and moist environments[J]. Advances in Cement Research, 2014, 26(1): 52-61. [66] SEO J, KIM S, PARK S, et al. Carbonation of calcium sulfoaluminate cement blended with blast furnace slag[J]. Cement and Concrete Composites, 2021, 118: 103918. [67] GUO X, SHI H, HU W, et al. Durability and microstructure of CSA cement-based materials from MSWI fly ash[J]. Cement and Concrete Composites, 2014, 46: 26-31. [68] GUO X, SHI H. Calcium sulfoaluminate (CSA) blended cements[J]. Magazine of Concrete Research, 2016, 68(4): 208-215. [69] HE J, LONG G, MA K, et al. Influence of fly ash or slag on nucleation and growth of early hydration of cement[J]. Thermochimica Acta, 2021, 701: 178964. [70] CHEN H G, YANG J J. A new supplementary cementitious material: walnut shell ash[J]. Construction and Building Materials, 2023, 408: 133852. [71] PARK S. Simulating the carbonation of calcium sulfoaluminate cement blended with supplementary cementitious materials[J]. Journal of CO2 Utilization, 2020, 41: 101286. [72] 许 闯, 张祖华, 陈慕翀, 等. 层状双金属氢氧化物在水泥混凝土中的形成、作用机制及应用[J]. 材料导报, 2022, 36(11): 99-105. XU C, ZHANG Z H, CHEN M C, et al. Formation, interaction mechanisms and application of layered double hydroxides in cement concrete[J]. Materials Reports, 2022, 36(11): 99-105 (in Chinese). [73] CONSTANTINO V R L, PINNAVAIA T J. Basic properties of Mg2+1-xAl3+x layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions[J]. Inorganic Chemistry, 1995, 34(4): 883-892. [74] TAYLOR H F W. Cement chemistry[M]. 2nd ed. London: Thomas Telford, 1997. [75] MORANDEAU A E, WHITE C E. Role of magnesium-stabilized amorphous calcium carbonate in mitigating the extent of carbonation in alkali-activated slag[J]. Chemistry of Materials, 2015, 27(19): 6625-6634. [76] 单继雄, 陈 伟, 田亚坡, 等. 活性氧化镁对碱矿渣混凝土抗碳化性能影响研究[J]. 武汉理工大学学报, 2015, 37(1): 10-15. SHAN J X, CHEN W, TIAN Y P, et al. Study on the effect of MgO on carbornation behavior of alkail-activated slag concrete[J]. Journal of Wuhan University of Technology, 2015, 37(1): 10-15 (in Chinese). [77] 郑 昊, 梁咏宁, 詹建伟, 等. MgO和CaO对碱矿渣混凝土抗碳化性能的影响[J]. 硅酸盐通报, 2021, 40(8): 2564-2573. ZHENG H, LIANG Y N, ZHAN J W, et al. Effects of MgO and CaO on the carbonization resistance of alkali-activated slag concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2564-2573 (in Chinese). [78] SEO J, YOON H N, KIM S, et al. Characterization of reactive MgO-modified calcium sulfoaluminate cements upon carbonation[J]. Cement and Concrete Research, 2021, 146: 106484. [79] CARSANA M, CANONICO F, BERTOLINI L. Corrosion resistance of steel embedded in sulfoaluminate-based binders[J]. Cement and Concrete Composites, 2018, 88: 211-219. [80] AFROUGHSABET V, BIOLZI L, MONTEIRO P J M, et al. Investigation of the mechanical and durability properties of sustainable high performance concrete based on calcium sulfoaluminate cement[J]. Journal of Building Engineering, 2021, 43: 102656. [81] 吴胜坤, 黄天勇, 谢 岩, 等. 二氧化碳矿化养护水泥基材料研究进展[J]. 硅酸盐通报, 2023, 42(6): 1897-1911. WU S K, HUANG T Y, XIE Y, et al. Review on CO2 mineral carbonation-cured cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 1897-1911 (in Chinese). [82] ZHANG D, CAI X H, SHAO Y X. Carbonation curing of precast fly ash concrete[J]. Journal of Materials in Civil Engineering, 2016, 28(11): 04016127. [83] HAMEED R, SEO J, PARK S, et al. CO2 uptake and physicochemical properties of carbonation-cured ternary blend Portland cement-metakaolin-limestone pastes[J]. Materials, 2020, 13(20): E4656. [84] 沈 燕, 张 伟, 陈 玺, 等. 硫铝酸盐水泥改性的研究进展[J]. 硅酸盐通报, 2019, 38(3): 683-687. SHEN Y, ZHANG W, CHEN X, et al. Research progress of sulfoaluminate cement modification[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 683-687 (in Chinese). [85] CHANG J, FANG Y F, SHANG X P. The role of β-C2S and γ-C2S in carbon capture and strength development[J]. Materials and Structures, 2016, 49(10): 4417-4424. [86] FANG Y F, CHANG J. Rapid hardening β-C2S mineral and microstructure changes activated by accelerated carbonation curing[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 681-689. [87] 张文生, 张江涛, 叶家元, 等. 硅酸二钙的结构与活性[J]. 硅酸盐学报, 2019, 47(11): 1663-1669. ZHANG W S, ZHANG J T, YE J Y, et al. Structure and activity of dicalcium silicate[J]. Journal of the Chinese Ceramic Society, 2019, 47(11): 1663-1669 (in Chinese). [88] SEO J, KIM S, YOON H N, et al. Effect of the molar ratio of calcium sulfate over ye’elimite on the reaction of CSA cement/slag blends under an accelerated carbonation condition[J]. Journal of Building Engineering, 2022, 46: 103785. [89] JANG J G, LEE H K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement[J]. Cement and Concrete Research, 2016, 82: 50-57. [90] MO L W, ZHANG F, DENG M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing[J]. Cement and Concrete Research, 2016, 88: 217-226. [91] ZHANG D, GHOULEH Z, SHAO Y X. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization, 2017, 21: 119-131. [92] SHARMA R, KIM H, LEE N K, et al. Microstructural characteristics and CO2 uptake of calcium sulfoaluminate cement by carbonation curing at different water-to-cement ratios[J]. Cement and Concrete Research, 2023, 163: 107012. [93] HUET B, TASOTI V, KHALFALLAH I. A review of Portland cement carbonation mechanisms in CO2 rich environment[J]. Energy Procedia, 2011, 4: 5275-5282. [94] ROSTAMI V, SHAO Y X, BOYD A J. Carbonation curing versus steam curing for precast concrete production[J]. Journal of Materials in Civil Engineering, 2012, 24(9): 1221-1229. |
[1] | 伍勇华, 易昂, 何娟, 匡玉峰, 原毅冰. 纳米C-S-H/PCE对蒸养UHPC力学性能增强机理研究[J]. 硅酸盐通报, 2024, 43(8): 2797-2805. |
[2] | 邓鑫, 李军, 卢忠远, 李晓英, 侯莉, 蒋俊, 犹娅, 张俊瑾, 何科文. 全再生骨料堆石混凝土性能研究[J]. 硅酸盐通报, 2024, 43(8): 2996-3004. |
[3] | 李红轩, 齐冬有, 邹德麟, 王剑锋, 汪智勇, 郝禄禄, 王亚丽, 张钰, 刘洪印. 铁铝酸盐、硫铝酸盐和硅酸盐水泥的水化进程对比研究[J]. 硅酸盐通报, 2024, 43(7): 2335-2345. |
[4] | 郑彪, 李顺凯, 李育林, 粟友良, 林奕安. 磁化水对海工混凝土力学性能和耐久性能的影响[J]. 硅酸盐通报, 2024, 43(6): 2039-2046. |
[5] | 马逍遥, 蹇守卫, 李宝栋, 黄健翔, 高欣, 薛文浩, 汪才峰. 不同无机增稠剂对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2024, 43(5): 1642-1650. |
[6] | 马继树, 杨淑雁. 西北大温差环境下温度对硫铝酸盐水泥砂浆抗压强度的影响[J]. 硅酸盐通报, 2024, 43(4): 1388-1397. |
[7] | 陈士军, 龚木联, 刘溯逸, 花思旭, 金修伟, 王昊. 基于响应曲面法的三元地聚合物注浆材料耐久性能研究[J]. 硅酸盐通报, 2024, 43(3): 938-947. |
[8] | 尹鹏翔, 李静. 废玻璃粉对泡沫混凝土性能和微观孔结构的影响及其价值工程分析[J]. 硅酸盐通报, 2024, 43(3): 1021-1029. |
[9] | 童小根, 张凯峰, 孟刚, 朱王科, 王敏, 付万长. 金尾矿复合砂对不同强度等级混凝土性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3231-3239. |
[10] | 李晓东, 滕逸伟, 赵建宁, 闫升, 杨建荣, 贾小龙. 大掺量煤气化炉渣稳定基层混合料的制备及路用性能研究[J]. 硅酸盐通报, 2023, 42(9): 3412-3420. |
[11] | 梁文杰, 谭洪波, 吕周岭. 混凝土内源氯离子固化的研究进展[J]. 硅酸盐通报, 2023, 42(8): 2667-2682. |
[12] | 裴天蕊, 齐冬有, 邹德麟, 蔡永慧, 汪智勇, 郝禄禄, 王亚丽, 张钰, 刘洪印. 矿渣-高贝利特硫铝酸盐水泥抗硫酸盐侵蚀机理的研究[J]. 硅酸盐通报, 2023, 42(8): 2683-2691. |
[13] | 王成刚, 刘耀伟, 王帅, 马兵辉, 毕功华. 钢渣双掺混凝土力学与耐久性能试验研究[J]. 硅酸盐通报, 2023, 42(8): 2846-2855. |
[14] | 李秋, 韦琦, 耿海宁, 李华辉, 陈伟. 低中放射性废物处置用高整体容器密封材料的制备与性能研究[J]. 硅酸盐通报, 2023, 42(7): 2290-2299. |
[15] | 黄莹蓥, 孔德文, 崔庚寅, 谢浪, 王玲玲. 玄武岩纤维对磷石膏基复合材料耐久性能的影响[J]. 硅酸盐通报, 2023, 42(7): 2521-2531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||