[1] 推进建筑材料行业碳达峰、碳中和行动倡议书[J]. 中国建材, 2021, 70(2): 21-23. Proposal for promoting carbon peak and carbon neutral action in the building materials industry[J]. China Building Materials, 2021, 70(2): 21-23 (in Chinese). [2] 曾令可, 李 萍, 王 慧, 等. 陶瓷烧成中的节能技术[J]. 佛山陶瓷, 2014, 24(1): 10-16. ZENG L K, LI P, WANG H, et al. Energy-saving technology in ceramic firing[J]. Foshan Ceramics, 2014, 24(1): 10-16 (in Chinese). [3] 郑树龙, 封 珍, 张 缇. 陶瓷生产中的低碳制造技术及资源循环利用技术的研究[J]. 佛山陶瓷, 2013, 23(1): 42-43+48. ZHENG S L, FENG Z, ZHANG T. Research on low-carbon manufacturing technology and resource recycling technology in ceramic production[J]. Foshan Ceramics, 2013, 23(1): 42-43+48 (in Chinese). [4] 沈君权, 沈帅冰. 低温快烧建筑卫生陶瓷低碳经济下的正确选择[J]. 陶瓷, 2011(6): 9-12. SHEN J Q, SHEN S B. Low temperature fast firing the correct selected of structural sanitation ceramics under low carbon economy[J]. Ceramics, 2011(6): 9-12 (in Chinese). [5] 谢悦增, 谢红波, 吴春丽. 陶瓷行业低温快烧技术研究进展[J]. 广东建材, 2017, 33(5): 66-68. XIE Y Z, XIE H B, WU C L. Research progress of low temperature rapid firing technology in ceramic industry[J]. Guangdong Building Materials, 2017, 33(5): 66-68 (in Chinese). [6] YUGUCHI T, IZUMINO Y, SASAO E J. Genesis and development processes of fractures in granite: petrographic indicators of hydrothermal alteration[J]. Plos One, 2021, 16(5): e0251198. [7] 李山坡, 许 虹, 高 迪, 等. 黑龙江金厂金矿钾长石的结构状态与温度及其成矿意义[J]. 矿物岩石地球化学通报, 2012, 31(1): 31-37+51. LI S P, XU H, GAO D, et al. Structure and forming temperature of K-feldspar and their metallogenic significance in the Jinchang gold deposit, Heilongjiang[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(1): 31-37+51 (in Chinese). [8] VAKIFAHMETOGLU C, ANGER J F, ATAKAN V, et al. Reactive hydrothermal liquid-phase densification (rHLPD) of ceramics-a study of the BaTiO3[TiO2]composite system[J]. Journal of the American Ceramic Society, 2016, 99(12): 3893-3901. [9] LIN M G, CHEN G, CHEN Y H, et al. Hydrothermal solidification of alkali-activated clay-slaked lime mixtures[J]. Construction and Building Materials, 2022, 325: 126660. [10] 叶家元, 李国豪, 史 迪, 等. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 177-184. YE J Y, LI G H, SHI D, et al. In-situ fabrication of zeolite using alkali-activated slag-metakaolin as precursors[J]. Materials Reports, 2023, 37(21): 177-184 (in Chinese). [11] 王 旭, 杨征勋, 张 政, 等. 粉煤灰地聚物前期高温环境对其力学性能的影响[J]. 新型建筑材料, 2023, 50(12): 12-17. WANG X, YANG Z X, ZHANG Z, et al. Effect of high temperature environment in the early curing period on mechanical properties of fly ash based geopolymer[J]. New Building Materials, 2023, 50(12): 12-17 (in Chinese). [12] MACKENZIE F T. Global biogeochemical cycles and the physical climate system[J]. Nato Asi, 1997. [13] KARACASULU L, KARTAL U, ICIN O, et al. Formation of monolithic SrTiO3-TiO2 ceramic heterostructures by reactive hydrothermal sintering[J]. Journal of the European Ceramic Society, 2023, 43(15): 6982-6988. [14] 兰浩然, 景镇子, 萧礼标, 等. 陶瓷废料水热固化技术在室内薄板材料上的应用[J]. 建筑材料学报, 2020, 23(4): 882-888. LAN H R, JING Z Z, XIAO L B, et al. Application of hydrothermal curing technology of ceramic waste in indoor sheet materials[J]. Journal of Building Materials, 2020, 23(4): 882-888 (in Chinese). [15] 钟辛子, 曹丽云, 黄剑锋, 等. 氧化锆纤维增强超薄陶瓷板的制备及力学性能研究[J]. 硅酸盐通报, 2021, 40(10): 3472-3478. ZHONG X Z, CAO L Y, HUANG J F, et al. Preparation and mechanical properties of zirconia fiber reinforced ultra-thin ceramic plate[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3472-3478 (in Chinese). [16] 吴南星, 赵增怡, 花拥斌, 等. 建筑陶瓷干法造粒过程坯料颗粒含水率的研究[J]. 陶瓷学报, 2017, 38(3): 421-424. WU N X, ZHAO Z Y, HUA Y B, et al. Simulated study on moisture content of building ceramic body particles during dry granulating process[J]. Journal of Ceramics, 2017, 38(3): 421-424 (in Chinese). [17] 王强涛. 高品质石英晶体生长及性能表征[D]. 长春: 长春理工大学, 2010. WANG Q T. Synthetic and characterization of high-quality quartz crystal[D]. Changchun: Changchun University of Science and Technology, 2010 (in Chinese). [18] PANDARINATH K, GARCIA-SOTO A Y, SANTOYO E, et al. Mineralogical and geochemical changes due to hydrothermal alteration of the volcanic rocks at Acoculco geothermal system, Mexico[J]. Geological Journal, 2020, 55(9): 6508-6526. [19] 刘向东, 邓 军, 张 良, 等. 胶西北寺庄金矿床热液蚀变作用[J]. 岩石学报, 2019, 35(5): 1551-1565. LIU X D, DENG J, ZHANG L, et al. Hydrothermal alteration of the Sizhuang gold deposit, northwestern Jiaodong Peninsula, Eastern China[J]. Acta Petrologica Sinica, 2019, 35(5): 1551-1565 (in Chinese). [20] 郭春丽, 张斌武, 郑 义, 等. 中国花岗岩型锂矿床:重要特征、成矿条件及形成机制[J]. 岩石学报, 2024, 40(2): 347-403. GUO C L, ZHANG B W, ZHENG Y, et al. Granite-type lithium deposits in China: important characteristics, metallogenic conditions, and genetic mechanism[J]. Acta Petrologica Sinica, 2024, 40(2): 347-403 (in Chinese). [21] YUGUCHI T, YAGI K, SASAO EIJI, et al. K-Ar geochronology for hydrothermal K-feldspar within plagioclase in a granitic pluton: constraints on timing and thermal condition for hydrothermal alteration[J]. Heliyon, 2021, 7(4): e06750. [22] 李建军, 刘晓伟, 王 岳, 等. 不同结晶程度SiO2的红外光谱特征及其意义[J]. 红外, 2010, 31(12): 31-35. LI J J, LIU X W, WANG Y, et al. Infrared spectral features of SiO2 with different crystallinity and their implications[J]. Infrared, 2010, 31(12): 31-35 (in Chinese). [23] 徐娅芬, 刘衔宇, 陈全莉, 等. “中东绿松石” 的矿物成分和谱学特征研究[J]. 光谱学与光谱分析, 2023, 43(9): 2862-2867. XU Y F, LIU X Y, CHEN Q L, et al. Study on mineral composition and spectral characteristics of “middle east turquoise”[J]. Spectroscopy and Spectral Analysis, 2023, 43(9): 2862-2867 (in Chinese). [24] 杜登文, 洪汉烈, 范 坎, 等. 湖北蕲春花岗岩钾长石的结构状态研究[J]. 光谱学与光谱分析, 2013, 33(3): 613-617. DU D W, HONG H L, FAN K, et al. Study on the fine structure of K-feldspar of Qichun granite[J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 613-617 (in Chinese). [25] 孙 冰, 陈 铭, 毕亚楠, 等. 钠长石玉与仿制品石英岩玉的鉴别特征[J]. 超硬材料工程, 2023, 35(1): 61-65. SUN B, CHEN M, BI Y N, et al. The identification characteristics of albite jade and imitation quartzite jade[J]. Superhard Material Engineering, 2023, 35(1): 61-65 (in Chinese). [26] 李 璇, 陈全莉, 郑晓华. 内蒙古固阳浅黄色系长石的谱学特征研究[J]. 光谱学与光谱分析, 2023, 43(5): 1622-1627. LI X, CHEN Q L, ZHENG X H. Spectral characteristics of light yellow feldspar from Guyang, inner Mongolia[J]. Spectroscopy and Spectral Analysis, 2023, 43(5): 1622-1627 (in Chinese). [27] 罗渝然. 化学键能数据手册[J]. 科学通报, 2005, 50(8): 759. LUO Y R. Experimental data of chemical bond energies[J]. Chinese Science Bulletin, 2005, 50(8): 759 (in Chinese). [28] 张 勇, 王友法, 闫玉华. 水热法在低维人工晶体生长中的应用与发展[J]. 硅酸盐通报, 2002, 21(3): 22-26. ZHANG Y, WANG Y F, YAN Y H. Development and application of hydrothermal method in growing low-dimensional artificial crystal[J]. Bulletin of Thechinese Ceramic Society, 2002, 21(3): 22-26 (in Chinese). [29] 李丹阳, 许德平, 赵心霓, 等. 利用粉煤灰制备透辉石微晶玻璃的研究[J]. 煤炭加工与综合利用, 2022(11): 96-100. LI D Y, XU D P, ZHAO X N, et al. Study on preparation of diopside glass-ceramics from fly ash[J]. Coal Processing & Comprehensive Utilization, 2022(11): 96-100 (in Chinese). [30] 聂光临, 刘一军, 汪庆刚, 等. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 131-139. NIE G L, LIU Y J, WANG Q G, et al. Preparation of building ceramics with high strength-toughness and high flexibility by a mechanical activation method[J]. Materials Reports, 2023, 37(24): 131-139 (in Chinese). |