[1] 杜明霞, 王进明, 董发勤, 等. 磷石膏资源化利用研究进展[J]. 矿产保护与利用, 2020, 40(3): 121-126. DU M X, WANG J M, DONG F Q, et al. Research progress on resource utilization of phosphogypsum[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 121-126 (in Chinese). [2] MEHTA P K, BRADY J R. Utilization of phosphogypsum in Portland cement industry[J]. Cement and Concrete Research, 1977, 7(5): 537-544. [3] TAYIBI H, CHOURA M, LÓPEZ F A, et al. Environmental impact and management of phosphogypsum[J]. Journal of Environmental Management, 2009, 90(8): 2377-2386. [4] DEĞIRMENCI N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction and Building Materials, 2008, 22(8): 1857-1862. [5] QIN X T, CAO Y H, GUAN H W, et al. Resource utilization and development of phosphogypsum-based materials in civil engineering[J]. Journal of Cleaner Production, 2023, 387: 135858. [6] LI B X, LI L, CHEN X, et al. Modification of phosphogypsum using circulating fluidized bed fly ash and carbide slag for use as cement retarder[J]. Construction and Building Materials, 2022, 338: 127630. [7] DEGIRMENCI N, OKUCU A, TURABI A. Application of phosphogypsum in soil stabilization[J]. Building and Environment, 2007, 42(9): 3393-3398. [8] GRACIOLI B, ANGULSKI DA LUZ C, BEUTLER C S, et al. Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements[J]. Construction and Building Materials, 2020, 262: 119961. [9] ESCALANTE-GARCÍA J I, MAGALLANES-RIVERA R X, GOROKHOVSKY A. Waste gypsum-blast furnace slag cement in mortars with granulated slag and silica sand as aggregates[J]. Construction and Building Materials, 2009, 23(8): 2851-2855. [10] 张 歆, 刘 方, 朱 健, 等. 基于电解锰渣-磷石膏复合胶凝材料的制备与表征[J]. 硅酸盐通报, 2021, 40(5): 1610-1619. ZHANG X, LIU F, ZHU J, et al. Preparation and characterization of composite cementitious material based on electrolytic manganese residue-phosphogypsum[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1610-1619 (in Chinese). [11] 郑玉龙, 嵇 帅, 陆春华, 等. 基于固废磷石膏制备胶凝材料的工艺与机制[J]. 复合材料学报, 2024, 41(3): 1436-1446. ZHENG Y L, JI S, LU C H, et al. Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1436-1446 (in Chinese). [12] 邱 伟, 孔德文, 崔庚寅, 等. 偏高岭土-磷石膏基复合胶凝材料性能试验研究[J]. 硅酸盐通报, 2023, 42(9): 3267-3276. QIU W, KONG D W, CUI G Y, et al. Experimental study on performance of metakaolin-phosphogypsum-based composite gelling materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3267-3276 (in Chinese). [13] SHEN W G, ZHOU M K, ZHAO Q L. Study on lime-fly ash-phosphogypsum binder[J]. Construction and Building Materials, 2007, 21(7): 1480-1485. [14] ZHANG M, GUO H, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer[J]. Construction and Building Materials, 2013, 47: 1468-1478. [15] LI J W, SHEN W G, ZHANG B L, et al. Investigation on the preparation and performance of clinker-fly ash-gypsum road base course binder[J]. Construction and Building Materials, 2019, 212: 39-48. [16] 纪小平, 代 聪, 崔志飞, 等. 固化剂稳定磷石膏路基填料的工程特性研究[J]. 中国公路学报, 2021, 34(10): 225-233. JI X P, DAI C, CUI Z F, et al. Research on engineering characteristics of curing agent stabilized phosphogypsum roadbed filler[J]. China Journal of Highway and Transport, 2021, 34(10): 225-233 (in Chinese). [17] MA W P, LIU C L, BROWN P W, et al. Pore structures of fly ashes activated by Ca(OH)2 and CaSO4 · 2H2O[J]. Cement and Concrete Research, 1995, 25(2): 417-425. [18] ZHAO D Q, ZHANG B L, SHEN W G, et al. High industrial solid waste road base course binder: performance regulation, hydration characteristics and practical application[J]. Journal of Cleaner Production, 2021, 313: 127879. [19] 杜婷婷, 李志清, 周应新, 等. 水泥磷石膏稳定材料用于路面基层的探究[J]. 公路, 2018, 63(2): 189-195. DU T T, LI Z Q, ZHOU Y X, et al. A study on the application of cement phosphogypsum stabilized material in pavement base[J]. Highway, 2018, 63(2): 189-195 (in Chinese). [20] SHEN W G, ZHOU M K, MA W, et al. Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material[J]. Journal of Hazardous Materials, 2009, 164(1): 99-104. [21] KAMPALA A, JITSANGIAM P, PIMRAKSA K, et al. An investigation of sulfate effects on compaction characteristics and strength development of cement-treated sulfate bearing clay subgrade[J]. Road Materials and Pavement Design, 2021, 22(10): 2396-2409. [22] 王子帅, 王东星. 工业废渣-水泥协同固化土抗硫酸盐侵蚀性能[J]. 岩土工程学报, 2022, 44(11): 2035-2042. WANG Z S, WANG D X. Performances of industrial residue-cement solidified soils in resisting sulfate erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2035-2042 (in Chinese). [23] WENG L, WU Z J, ZHANG S L, et al. Real-time characterization of the grouting diffusion process in fractured sandstone based on the low-field nuclear magnetic resonance technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 152: 105060. [24] JIA H L, DING S, WANG Y, et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Regions Science and Technology, 2019, 168: 102893. [25] JIA H L, ZI F, YANG G S, et al. Influence of pore water (ice) content on the strength and deformability of frozen argillaceous siltstone[J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 967-974. |