硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (7): 2503-2513.
所属专题: 资源综合利用
余金虎1,2, 李强2, 刘学应2, 周曙光1,2, 王超1,2
收稿日期:
2023-10-10
修订日期:
2024-01-08
出版日期:
2024-07-15
发布日期:
2024-07-24
通信作者:
李 强,教授。E-mail:18656038817@163.com
作者简介:
余金虎(1998—),男,硕士研究生。主要从事地聚物混凝土力学性能的研究。E-mail:1941358780@qq.com
基金资助:
YU Jinhu1,2, LI Qiang2, LIU Xueying2, ZHOU Shuguang1,2, WANG Chao1,2
Received:
2023-10-10
Revised:
2024-01-08
Online:
2024-07-15
Published:
2024-07-24
摘要: 地质聚合物混凝土是一种新型绿色建筑材料,氯离子传输是影响其服役寿命的关键因素。本文在介绍地质聚合物混凝土氯离子传输机理的基础上,归纳总结了地质聚合物混凝土抗氯离子渗透性能试验方法的特点和局限性, 介绍了地质聚合物混凝土抗氯离子渗透性能的影响因素,并对比了其与普通混凝土氯离子传输机理的区别。文章最后指出高温、冻融等单一因素影响下的地质聚合物混凝土氯离子传输模型、碱掺量和水玻璃模数对地质聚合物混凝土抗氯离子渗透性能的影响,以及氯离子的显色边界浓度的准确性等还有待进一步深入研究。
中图分类号:
余金虎, 李强, 刘学应, 周曙光, 王超. 地质聚合物混凝土抗氯离子渗透性能研究进展[J]. 硅酸盐通报, 2024, 43(7): 2503-2513.
YU Jinhu, LI Qiang, LIU Xueying, ZHOU Shuguang, WANG Chao. Research Progress on Chloride Ion Penetration Resistance of Geopolymer Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2503-2513.
[1] WANG A G, ZHENG Y, ZHANG Z H, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review[J]. Engineering, 2020, 6(6): 695-706. [2] PARTHIBAN D, VIJAYAN D S. Study on stress-strain effect of reinforced Metakaolin based GPC under compression[J]. Materials Today: Proceedings, 2020, 22: 822-828. [3] LI V C. High-performance and multifunctional cement-based composite material[J]. Engineering, 2019, 5(2): 250-260. [4] DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [5] LAHOTI M, NARANG P, TAN K H, et al. Mix design factors and strength prediction of metakaolin-based geopolymer[J]. Ceramics International, 2017, 43(14): 11433-11441. [6] ROSTAMI M, BEHFARNIA K. The effect of silica fume on durability of alkali activated slag concrete[J]. Construction and Building Materials, 2017, 134: 262-268. [7] HASSAN A, ARIF M, SHARIQ M. Use of geopolymer concrete for a cleaner and sustainable environment: a review of mechanical properties and microstructure[J]. Journal of Cleaner Production, 2019, 223: 704-728. [8] TURNER L K, COLLINS F G. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete[J]. Construction and Building Materials, 2013, 43: 125-130. [9] 孙丛涛, 牛荻涛. 混凝土中氯离子扩散性能的深入探讨[J]. 工业建筑, 2010, 40(9): 80-83. SUN C T, NIU D T. Further study on chloride ion diffusion properties in concrete[J]. Industrial Construction, 2010, 40(9): 80-83 (in Chinese). [10] 田 壮, 肖官衍, 金伟良, 等. 基于复合材料理论的混凝土内多离子扩散模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1393-1401. TIAN Z, XIAO G Y, JIN W L, et al. Diffusion model of multi ions in concrete based on composite theory[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(7): 1393-1401 (in Chinese). [11] SINGH B, ISHWARYA G, GUPTA M, et al. Geopolymer concrete: a review of some recent developments[J]. Construction and Building Materials, 2015, 85: 78-90. [12] 孙 浩, 马志斌, 路广军, 等. 粉煤灰碱激发制备地质聚合物研究进展[J]. 洁净煤技术, 2023, 29(11): 140-153. SUN H, MA Z B, LU G J, et al. Review on geopolymer preparation by alkali activation of coal fly ash[J]. Clean Coal Technology, 2023, 29(11): 140-153 (in Chinese). [13] 吕邦成, 郭丽萍, 丁 聪, 等. 高延性地质聚合物复合材料性能及微结构研究进展[J]. 材料导报, 2023, 37(10): 230-240. LYU B C, GUO L P, DING C, et al. A review on performance and microstructure of high ductility geopolymer composites[J]. Materials Reports, 2023, 37(10): 230-240 (in Chinese). [14] WASIM M, NGO T D, LAW D. A state-of-the-art review on the durability of geopolymer concrete for sustainable structures and infrastructure[J]. Construction and Building Materials, 2021, 291: 123381. [15] YANG T, XU S C, LIU Z X, et al. Experimental and numerical investigation of bond behavior between geopolymer based ultra-high-performance concrete and steel bars[J]. Construction and Building Materials, 2022, 345: 128220. [16] HUANG J Q, KUMAR S, DAI J G. Flexural performance of steel-reinforced geopolymer concrete one-way slabs: experimental and numerical investigations[J]. Construction and Building Materials, 2023, 366: 130098. [17] SUDHA C, SAMBASIVAN A K, KANNAN R P R, et al. Investigation on the performance of reinforced concrete columns jacketed by conventional concrete and geopolymer concrete[J]. Engineering Science and Technology, an International Journal, 2022, 36: 101275. [18] ARAVIND N, NAGAJOTHI S, ELAVENIL S. Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams[J]. Construction and Building Materials, 2021, 297: 123785. [19] 陈艾荣, 潘子超. 细观尺度上的钢筋混凝土结构耐久性数值模拟[M]. 北京: 科学出版社, 2016: 71-75. CHEN A R, PAN Z C. Numerical simulation of the durability of reinforced concrete structures on a fine scale[M]. Beijing: Science Publishing House, 2016: 71-75 (in Chinese). [20] SHI C J, DENG D H, XIE Y J. Pore structure and chloride ion transport mechanisms in concrete[J]. Key Engineering Materials, 2006, 302/303: 528-535. [21] FU Q, ZHANG Z R, NIU D T. Understanding the acceleration impact of load and flowing water on the chloride ion transport properties of fly ash-based geopolymer concrete[J]. Cement and Concrete Composites, 2023, 141: 105146. [22] TURGEON-MALETTE V, CHEN X D, BAH A S, et al. Chloride ion permeability of ultra-high-performance fiber-reinforced concrete under sustained load[J]. Journal of Building Engineering, 2023, 66: 105842. [23] 李宇航, 温 勇, 韩国旗, 等. 持续荷载和锂渣取代量对混凝土抗氯离子渗透性能的影响[J]. 硅酸盐通报, 2023, 42(2): 598-606. LI Y H, WEN Y, HAN G Q, et al. Effects of continuous load and lithium slag content on chloride ion permeability resistance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 598-606 (in Chinese). [24] 张 勇, 方宇迟, 沈 颖, 等. 非饱和碱矿渣砂浆的氯离子传输试验研究[J]. 建筑材料学报, 2022, 25(12): 1219-1224. ZHANG Y, FANG Y C, SHEN Y, et al. Experimental study on chloride transport in unsaturated alkali-activated slag mortars[J]. Journal of Building Materials, 2022, 25(12): 1219-1224 (in Chinese). [25] 韦建刚, 陈 荣, 黄 伟, 等. 静水压力下超高性能混凝土的抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(8): 2706-2715+2747. WEI J G, CHEN R, HUANG W, et al. Chloride penetration resistance of ultra-high performance concrete under hydrostatic pressure[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2706-2715+2747 (in Chinese). [26] 汪首元, 闫金萍, 李 昊, 等. 掺加高吸水树脂(SAP)的混凝土孔结构及其耐久性[J]. 公路, 2023, 68(5): 295-300. WANG S Y, YAN J P, LI H, et al. Pore structure and durability of concrete mixed with super absorbent resin (SAP)[J]. Highway, 2023, 68(5): 295-300 (in Chinese). [27] 李趁趁, 张文彬, 张 普, 等. 硫酸钙晶须-玄武岩纤维混凝土抗氯离子渗透性能试验[J]. 工业建筑, 2022, 52(9): 48-52+66. LI C C, ZHANG W B, ZHANG P, et al. Experimental research on chloride penetration resistance of calcium sulfate whisker and basalt fiber concrete[J]. Industrial Construction, 2022, 52(9): 48-52+66 (in Chinese). [28] OKOYE F N, PRAKASH S, SINGH N B. Durability of fly ash based geopolymer concrete in the presence of silica fume[J]. Journal of Cleaner Production, 2017, 149: 1062-1067. [29] ÇEVIK A, ALZEEBAREE R, HUMUR G, et al. Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete[J]. Ceramics International, 2018, 44(11): 12253-12264. [30] BABAEE M, CASTEL A. Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete[J]. Cement and Concrete Research, 2016, 88: 96-107. [31] LEE W H, WANG J H, DING Y C, et al. A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete[J]. Construction and Building Materials, 2019, 211: 807-813. [32] 蒋林华, 李 娟. 混凝土抗氯离子渗透性试验方法比较研究[J]. 河海大学学报(自然科学版), 2004, 32(1): 55-58. JIANG L H, LI J. Investigation of test methods for concrete resistance to chloride ion permeability[J]. Journal of Hehai University (Natural Sciences), 2004, 32(1): 55-58 (in Chinese). [33] YANG C C, SU J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement and Concrete Research, 2002, 32(10): 1559-1565. [34] HE R, YE H L, MA H Y, et al. Correlating the chloride diffusion coefficient and pore structure of cement-based materials using modified noncontact electrical resistivity measurement[J]. Journal of Materials in Civil Engineering, 2019, 31(3): 04019006. [35] 方 正, 王 冲, 罗遥凌. 电脉冲对加速水泥基材料碳硫硅钙石型硫酸盐侵蚀的影响[J]. 硅酸盐学报, 2018, 46(8): 1095-1102. FANG Z, WANG C, LUO Y L. Effect of electrical pulse on accelerated thaumasite sulfate attack in cement-based materials[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1095-1102 (in Chinese). [36] 曾 涛, 方 正, 熊光启, 等. 基于直流阶跃暂态电阻法的混凝土渗透性表征[J]. 土木与环境工程学报(中英文), 2023, 12(15): 1-13. ZENG T, FANG Z, XIONG G Q, et al. Characterisation of concrete permeability based on the DC step transient resistance method[J]. Journal of Civil and Environmental Engineering, 2023, 12(15): 1-13 (in Chinese). [37] NYBO E, MAIER R S, LAUCHNOR E G, et al. Electrophoretic nuclear magnetic resonance measurement of electroosmotic flow and dispersion in hydrating cement paste[J]. Cement and Concrete Research, 2019, 116: 11-18. [38] 陈佳文. 水泥基材料氯离子渗透扩散性的试验研究与细观数值模拟[D]. 武汉: 华中科技大学, 2021. CHEN J W. Experimental study and meso-numerical simulation on permeability and diffusion of chloride ion in cement-based materials[D].Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese). [39] XIAO L Z, REN Z, SHI W C, et al. Experimental study on chloride permeability in concrete by non-contact electrical resistivity measurement and RCM[J]. Construction and Building Materials, 2016, 123: 27-34. [40] HE F Q, SHI C J, YUAN Q, et al. Calculation of chloride concentration at color change boundary of AgNO3 colorimetric measurement[J]. Cement and Concrete Research, 2011, 41(11): 1095-1103. [41] MAES M, GRUYAERT E, DE BELIE N. Resistance of concrete with blast-furnace slag against chlorides, investigated by comparing chloride profiles after migration and diffusion[J]. Materials and Structures, 2013, 46(1): 89-103. [42] YANG C C, WANG L C. The diffusion characteristic of concrete with mineral admixtures between salt ponding test and accelerated chloride migration test[J]. Materials Chemistry and Physics, 2004, 85(2/3): 266-272. [43] CHIANG C T, YANG C C. Relation between the diffusion characteristic of concrete from salt ponding test and accelerated chloride migration test[J]. Materials Chemistry and Physics, 2007, 106(2/3): 240-246. [44] 薛军鹏, 林亚杰, 陈建科, 等. 氯盐环境下混凝土离子渗透性测试方法评述[J]. 混凝土世界, 2018(10): 52-57. XUE J P, LIN Y J, CHEN J K, et al. The review of the test methods for chloride ion permeability of concrete under chloride-rich environment[J]. China Concrete, 2018(10): 52-57 (in Chinese). [45] 罗伯光, 覃荷瑛. 利用NEL法研究再生混凝土抗氯离子渗透性能[J]. 混凝土, 2014(9): 41-44. LUO B G, QIN H Y. Study on anti-chloride ion permeability of recycled aggregate concrete by NEL method[J]. Concrete, 2014(9): 41-44 (in Chinese). [46] 阎培渝, 杨进波, 吴志刚. 混凝土保护层抗氯离子渗透性的现场测试方法研究[J]. 混凝土, 2008(8): 6-9. YAN P Y, YANG J B, WU Z G. Experimental research of an in situ chloride migration test for covercrete[J]. Concrete, 2008(8): 6-9 (in Chinese). [47] CABEZA M, KEDDAM M, NÓVOA X R, et al. Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste[J]. Electrochimica Acta, 2006, 51(8/9): 1831-1841. [48] CHINDAPRASIRT P, CHALEE W. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site[J]. Construction and Building Materials, 2014, 63: 303-310. [49] SADANGI S C, PRADHAN B. Effect of admixed chloride and molarity of NaOH solution on early-age strength and reinforcement corrosion in FA/GGBS geopolymer concrete[J]. Materials Today: Proceedings, 2022, 65: 1528-1533. [50] BERNAL S A, MEJÍA DE GUTIÉRREZ R, PROVIS J L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends[J]. Construction and Building Materials, 2012, 33: 99-108. [51] 陈 乔. 碱矿渣混凝土氯离子渗透及钢筋锈蚀性能研究[D]. 重庆: 重庆大学, 2008. CHEN Q. Research on chloride ion permeability and reinforcement corrosion of alkali activated slag concrete[D].Chongqing: Chongqing University, 2008 (in Chinese). [52] 于 琦, 万小梅, 赵铁军, 等. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 100-105. YU Q, WAN X M, ZHAO T J, et al. Investigation on resistance of chloride penetration of alkali activated slag concrete and related electrical test methods[J]. Materials Reports, 2022, 36(5): 100-105 (in Chinese). [53] MELO N A A, CINCOTTO M A, REPETTE W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cement and Concrete Research, 2008, 38(4): 565-574. [54] RYU G S, LEE Y B, KOH K T, et al. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators[J]. Construction and Building Materials, 2013, 47: 409-418. [55] 刘小金. 用交流阻抗方法研究碱激发矿渣水泥浆体水化和微观结构[D]. 长沙: 湖南大学, 2015. LIU X J. Study on hydration and microstructure of alkali-activated slag cement paste by AC impedance method[D].Changsha: Hunan University, 2015 (in Chinese). [56] 张 宇. 碱激发矿渣混凝土的力学性能和荷载下的传输性能[D]. 青岛: 青岛理工大学, 2018. ZHANG Y. The mechanical properties and transport properties under loading of alkali-activated slag concrete[D].Qingdao: Qingdao Tehcnology University, 2018 (in Chinese). [57] WANG S D, SCRIVENER K L, PRATT P L. Factors affecting the strength of alkali-activated slag[J]. Cement and Concrete Research, 1994, 24(6): 1033-1043. [58] MA Q M, NANUKUTTAN S V, MUHAMMED B P A, et al. Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes[J]. Materials and Structures, 2016, 49(9): 3663-3677. [59] 杜天玲, 刘 英, 于咏妍, 等. 水玻璃对粉煤灰矿渣地聚合物强度的影响及激发机理[J]. 公路交通科技, 2021, 38(1): 41-49. DU T L, LIU Y, YU Y Y, et al. Influence of sodium silicate on fly ash slag geopolymer strength and stimulating mechanism[J]. Journal of Highway and Transportation Research and Development, 2021, 38(1): 41-49 (in Chinese). [60] JUMAA N H, ALI I M, NASR M S, et al. Strength and microstructural properties of binary and ternary blends in fly ash-based geopolymer concrete[J]. Case Studies in Construction Materials, 2022, 17: e01317. [61] YAVANA R S, SALEH N M, BIN N J, et al. Durability of geopolymer concrete with addition of polypropylene fibre[J]. Materials Today: Proceedings, 2022, 56: 2846-2851. [62] JAYANTHI V, AVUDAIAPPAN S, AMRAN M, et al. Innovative use of micronized biomass silica-GGBS as agro-industrial by-products for the production of a sustainable high-strength geopolymer concrete[J]. Case Studies in Construction Materials, 2023, 18: e01782. [63] ALAWI AL-SODANI K A. Mix design, mechanical properties and durability of the rubberized geopolymer concrete: a review[J]. Case Studies in Construction Materials, 2022, 17: e01480. [64] BABU G K, RAO K V, DEY S, et al. Performance studies on quaternary blended geopolymer concrete[J]. Hybrid Advances, 2023, 2: 100019. [65] MOUSAVINEJAD S H G, SAMMAK M. Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete[J]. Structures, 2021, 32: 1420-1427. [66] HU M Y, ZHU X M, LONG F M. Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives[J]. Cement and Concrete Composites, 2009, 31(10): 762-768. [67] HUSEIEN G F, MIRZA J, ISMAIL M, et al. Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar[J]. Ain Shams Engineering Journal, 2018, 9(4): 1557-1566. [68] PRABU B, SHALINI A, KUMAR J. Rice husk ash based geopolymer concrete: a review[J]. Chemical Science Review and Letters, 2014 [69] FARHAN K Z, JOHARI M A M, DEMIRBOĞA R. Impact of fiber reinforcements on properties of geopolymer composites: a review[J]. Journal of Building Engineering, 2021, 44: 102628. |
[1] | 马欣眉, 温勇, 田沛丰, 林海孟, 邵帅. 维生素在含氯混凝土模拟孔隙液中对钢筋的缓蚀作用[J]. 硅酸盐通报, 2024, 43(6): 2093-2101. |
[2] | 梁秋群, 陈宣东, 胡祥. 冻融循环下混凝土中氯离子传输机制细观模拟[J]. 硅酸盐通报, 2024, 43(6): 2102-2110. |
[3] | 汪伟, 赖增成, 谭鹏, 鞠志成, 杨海成, 范志宏. 机制砂与特细砂抗氯盐侵蚀混凝土的制备及性能研究[J]. 硅酸盐通报, 2024, 43(6): 2121-2129. |
[4] | 郑建岚, 王雅思, 叶艳. 原状海砂对混凝土力学性能的影响[J]. 硅酸盐通报, 2024, 43(6): 2149-2156. |
[5] | 宁慧员, 张菊, 闫长旺, 白茹. 基于高斯过程回归模型的电石渣激发煤矸石地聚合物强度响应预测与分析[J]. 硅酸盐通报, 2024, 43(3): 905-913. |
[6] | 冷玲倻, 张鹏飞, 梁文文. 高温下玄武岩纤维增强地质聚合物混凝土的动态压缩力学行为[J]. 硅酸盐通报, 2024, 43(3): 914-921. |
[7] | 崔纪飞, 柏林, 饶平平, 康陈俊杰, 张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型[J]. 硅酸盐通报, 2024, 43(2): 439-447. |
[8] | 李靖威, 李敬超, 郑睿鹏, 王晨. 无机玻璃结构弛豫及影响因素综述[J]. 硅酸盐通报, 2024, 43(2): 682-694. |
[9] | 易钰奇, 李静, 韦柳媚, 田浩, 庄恩德, 黎雪杰. 不同镁铝比LDHs对钢筋阻锈性能的影响[J]. 硅酸盐通报, 2024, 43(1): 121-127. |
[10] | 刘玉美, 杨浪, 饶峰, 张凯铭, 孙传琳. 氯离子对海工混凝土钢筋腐蚀的研究进展[J]. 硅酸盐通报, 2023, 42(9): 3059-3074. |
[11] | 单亚龙, 杨圣洁, 何公瑞, 眭世玉, 李绍纯, 耿永娟. 石灰石微粉对水泥基材料氯离子传输的影响机理研究[J]. 硅酸盐通报, 2023, 42(9): 3089-3099. |
[12] | 张涛, 王腾, 张琰, 谭洪波, 刘佳龙, 董超. 矿渣微粉对水泥净浆性能及氯离子固化作用的影响[J]. 硅酸盐通报, 2023, 42(9): 3240-3247. |
[13] | 梁文杰, 谭洪波, 吕周岭. 混凝土内源氯离子固化的研究进展[J]. 硅酸盐通报, 2023, 42(8): 2667-2682. |
[14] | 褚洪岩, 安圆圆, 秦健健, 蒋金洋. 轻质高性能混凝土力学性能及微观结构研究[J]. 硅酸盐通报, 2023, 42(8): 2722-2732. |
[15] | 蒋应军, 王煜鑫, 周传荣, 李明杰, 杨明, 蒋学猛. 垂直振动成型CTB-50水泥稳定碎石抗压强度增长规律及预测模型[J]. 硅酸盐通报, 2023, 42(8): 3045-3054. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||