[1] 李东升, 吴国立, 冯思超. 纤维增强水泥基复合材料力学性能的研究进展[J]. 河南科技, 2023, 42(2): 89-92. LI D S, WU G L, FENG S C. Research progress on mechanical properties of fiber-reinforced cement-based composites[J]. Henan Science and Technology, 2023, 42(2): 89-92 (in Chinese). [2] 刘 波, 张绪涛, 尹瑞杰, 等. 聚丙烯纤维混凝土研究综述[J]. 四川水泥, 2021(1): 5-6. LIU B, ZHANG X T, YIN R J, et al. Summary of research on polypropylene fiber concrete[J]. Sichuan Cement, 2021(1): 5-6 (in Chinese). [3] 王来贵, 陈 强, 潘纪伟, 等. 聚丙烯纤维增强水泥砂浆力学性能试验研究[J]. 硅酸盐通报, 2017, 36(3): 870-877. WANG L G, CHEN Q, PAN J W, et al. Experimental study on mechanical properties of cement mortar reinforced by polypropylene fiber[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(3): 870-877 (in Chinese). [4] 郭荣鑫, 郭佳栋, 颜 峰, 等. 聚丙烯纤维轻骨料混凝土力学性能及破坏机理研究[J]. 硅酸盐通报, 2019, 38(5): 1323-1330. GUO R X, GUO J D, YAN F, et al. Investigation on mechanical properties and failure mechanism of polypropylene fiber reinforced lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1323-1330 (in Chinese). [5] BELGACEM M N, BATAILLE P, SAPIEHA S. Effect of corona modification on the mechanical properties of polypropylene/cellulose composites[J]. Journal of Applied Polymer Science, 1994, 53(4): 379-385. [6] LI R Z, YE L, MAI Y W. Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(1): 73-86. [7] HILL C. Wood-plastic composites: strategies for compatibilising the phases[J]. Journal of the Institute of Wood Science, 2000, 15: 140-146. [8] 李启金, 李国忠. 聚丙烯纤维化学接枝改性增强水泥基复合材料的界面结合[J]. 复合材料学报, 2013, 30(4): 238-244. LI Q J, LI G Z. Surface modification of polypropylene fibers by chemical grafting methods to reinforce the interfacial bonding of cement-based composites[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 238-244 (in Chinese). [9] AZIZ T, ULLAH A, FAN H, et al. Recent progress in silane coupling agent with its emerging applications[J]. Journal of Polymers and the Environment, 2021, 29(11): 3427-3443. [10] 付希尧. 硅烷偶联剂改性骨料对透水混凝土性能的影响[J]. 混凝土与水泥制品, 2018(7): 20-23. FU X Y. The influence of aggregate modified with silane coupling agent on performance of pervious concrete[J]. China Concrete and Cement Products, 2018(7): 20-23 (in Chinese). [11] 冯玉龙. 硅烷偶联剂改性花岗岩骨料与水泥浆作用机理研究[D]. 汕头: 汕头大学, 2007. FENG Y L. Studies on the action mechanism between SCA modified granite aggregates and cement pastes[D].Shantou: Shantou University, 2007 (in Chinese). [12] 赵 毅, 沈 龚, 缪一新, 等. 硅烷偶联剂在混凝土中应用的研究进展[J]. 应用化工, 2023, 52(5): 1496-1501. ZHAO Y, SHEN G, MIAO Y X, et al. Research progress on the application of silane coupling agent in concrete[J]. Applied Chemical Industry, 2023, 52(5): 1496-1501 (in Chinese). [13] 李 静, 李 萍, 林 芳, 等. 硅烷偶联剂对碱矿渣混凝土碳化侵蚀的抑制作用[J]. 材料科学与工程学报, 2023, 41(3): 497-501. LI J, LI P, LIN F, et al. Controlling the carbonation degradation of alkali-activated slag concrete using silane coupling agent[J]. Journal of Materials Science and Engineering, 2023, 41(3): 497-501 (in Chinese). [14] 刘建祥, 阎慧群, 侯欣蕾, 等. 硅烷偶联剂与竹纤维对混凝土渗透性能的影响[J]. 混凝土, 2016(5): 70-73+77. LIU J X, YAN H Q, HOU X L, et al. Influence of silance coupling agent and bamboo fiber on the permeability of concrete[J]. Concrete, 2016(5): 70-73+77 (in Chinese). [15] 罗 玲, 彭家惠, 瞿金东. 硅烷偶联剂改性对聚丙烯纤维抗裂效果的影响[J]. 重庆建筑大学学报, 2007, 29(4): 118-120. LUO L, PENG J H, QU J D. Modification of polypropylene fiber by silane coupling agent and its influence on the anti-crack property of cement mortar[J]. Journal of Chongqing Jianzhu University, 2007, 29(4): 118-120 (in Chinese). [16] FEI Y W, MA J, SUN S A, et al. Surface hydrophilic modification of polypropylene fiber by hydrolysis of silane coupling agent[J]. Key Engineering Materials, 2018, 779: 80-85. [17] 李宝佳, 李国忠, 宁 超. 硅烷偶联剂改性聚丙烯纤维水泥砂浆性能研究[J]. 墙材革新与建筑节能, 2010(12): 50-52. LI B J, LI G Z, NING C. Study on properties of polypropylene fiber cement mortar modified by silane coupling agent[J]. Wall Materials Innovation & Energy Saving in Buildings, 2010(12): 50-52 (in Chinese). [18] 黄承亚, 龚克成, 李 红. 改性聚丙烯纤维水泥基复合材料力学性能研究[J]. 混凝土与水泥制品, 2001(6): 40-42. HUANG C Y, GONG K C, LI H. Study on mechanical properties of modified polypropylene fiber cement-based composites[J]. Chinal Concrete and Cement Products, 2001(6): 40-42 (in Chinese). [19] 刘鸿铭, 费逸伟, 孙世安, 等. 表面亲水改性聚丙烯纤维的性能研究[J]. 化工时刊, 2017, 31(12): 15-18. LIU H M, FEI Y W, SUN S A, et al. The performance study of the surface of hydrophilic modification of polypropylene fiber[J]. Chemical Industry Times, 2017, 31(12): 15-18 (in Chinese). [20] SHI F, YIN S, PHAM T M, et al. Pullout and flexural performance of silane groups and hydrophilic groups grafted polypropylene fibre reinforced UHPC[J]. Construction and Building Materials, 2021, 277: 122335. [21] 迟玉萌. 聚合物水泥防水砂浆的改性研究[D]. 长春: 吉林建筑大学, 2023. CHI Y M. Research on modification of polymer cement waterproof mortar[D]. Changchun: Jilin Jianzhu University, 2023 (in Chinese). [22] 马琳琳. PP纤维的表面改性及其对水泥砂浆抗硫酸盐侵蚀性的影响[D]. 西安: 西安建筑科技大学, 2021. MA L L. Surface modification of PP fiber and its effect on the sulfate corrosion resistance of cement mortar[D]. Xi’an: Xi’an University of Architecture and Technology, 2021 (in Chinese). [23] 骆宣耀, 韦粤海, 马雷雷, 等. 硅烷偶联剂改性对玄武岩纤维增强乙烯基酯树脂复合材料力学性能的影响[J]. 现代纺织技术, 2023, 31(4): 103-110. LUO X Y, WEI Y H, MA L L, et al. Effects of silane coupling agent modification on the mechanical properties of basalt fiber-reinforced vinyl ester resin composites[J]. Advanced Textile Technology, 2023, 31(4): 103-110 (in Chinese). [24] 孙海燕, 龚爱民. 聚丙烯纤维增强混凝土的室内试验研究[J]. 中国农村水利水电, 2007(4): 107-110. SUN H Y, GONG A M. Laboratory experimental study on polypropylene fiber reinforced concrete[J]. China Rural Water and Hydropower, 2007(4): 107-110 (in Chinese). |