欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (3): 905-913.

所属专题: 资源综合利用

• 资源综合利用 • 上一篇    下一篇

基于高斯过程回归模型的电石渣激发煤矸石地聚合物强度响应预测与分析

宁慧员1, 张菊1, 闫长旺1,2, 白茹3,4   

  1. 1.内蒙古工业大学土木工程学院,呼和浩特 010051;
    2.内蒙古工业大学资源与环境工程学院,呼和浩特 010051;
    3.内蒙古工业大学矿产资源绿色开发重点实验室,呼和浩特 010051;
    4.生态型建筑材料与装配式结构内蒙古自治区 工程研究中心,呼和浩特 010051
  • 收稿日期:2023-09-28 修订日期:2023-11-23 出版日期:2024-03-15 发布日期:2024-03-27
  • 通信作者: 张 菊,博士,教授。E-mail:zj970741@126.com
  • 作者简介:宁慧员(1999—),男,硕士研究生。主要从事低碳建筑材料的研究。E-mail:ninghuiyuan2022@163.com
  • 基金资助:
    国家自然科学基金(52068059,52368036);中央引导地方科技发展资金(2022ZY0160);鄂尔多斯市重点研发计划(YF20232358);内蒙古自治区直属高校基本科研业务费(JY20220009,JY20230117,JY20220179);内蒙古工业大学博士基金科学研究项目(BS2021049)

Prediction and Analysis of Strength Response of Calcium Carbide Slag Excited Coal Gangue Geopolymer Based on Gaussian Process Regression Model

NING Huiyuan1, ZHANG Ju1, YAN Changwang1,2, BAI Ru3,4   

  1. 1. School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
    2. School of Resource and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
    3. Key Laboratory of Green Development of Mineral Resources, Inner Mongolia University of Technology, Hohhot 010051, China;
    4. Ecological Building Materials and Prefabricated Structures Inner Mongolia Autonomous Region Engineering Research Center, Hohhot 010051, China
  • Received:2023-09-28 Revised:2023-11-23 Online:2024-03-15 Published:2024-03-27

摘要: 地聚合物的抗压强度是评估其能否代替水泥作为新型建筑材料的关键因素之一,但仅依靠大量试验测试强度,既浪费资源又增加成本。为了解决这一问题,通过早期试验收集的电石渣激发煤矸石地聚合物的强度数据,将不同配合比、水胶比、龄期作为输入参数,抗压强度作为输出结果,基于机器学习方法构建强度响应预测模型——高斯过程回归(GPR)模型,并利用模型对不同配合比及龄期的地聚合物强度进行预测,进而建立各组分掺量、水胶比、龄期对强度的影响曲线并探究原因。结果表明:GPR模型经过对样本数据的拟合,可以较好地预测地聚合物的强度,且误差为(-0.001 93~+0.001 83);利用受过训练的模型对未知抗压强度的地聚合物进行强度预测,通过预测结果分析各输入参数(电石渣掺量、煤矸石掺量、水胶比和养护龄期)对强度的影响,发现强度与上述变量均有密切关系,其中电石渣掺量、煤矸石掺量和养护龄期对强度的影响更显著。

关键词: 电石渣, 煤矸石, 地聚合物, 高斯过程回归, 抗压强度预测, 强度影响因素

Abstract: The compressive strength of geopolymer is one of key factors in evaluating whether geopolymer can replace cement as a new building material, but relying only on many tests to test its strength wastes resources and improves costs. To solve this problem, the data of calcium carbide slag excited coal gangue geopolymer collected through early experiments, different mixing ratios, water-binder ratios, and ages were used as input parameters and compressive strength was used as output results. The strength response prediction model—Gaussian process regression (GPR) model was constructed based on machine learning methods. The geopolymer strength of different mixing ratios and ages was predicted by using the model, then the influence curves of each component content, water-binder ratio and age on the strength were established and the reasons were explored. The results show that the GPR model can predict the strength of geopolymer well after fitting the sample data, and the error is in the range of (-0.001 93~+0.001 83). The strength prediction of geopolymer with unknown compressive strength is made by the trained model, and the influences of each input parameters (calcium carbide slag content, coal gangue content, water-binder ratio, and curing age) on the strength were analyzed through the prediction results. It is found that the strength is closely related to the above variables, among which the calcium carbide slag content, coal gangue content and curing age have more influence on the strength.

Key words: calcium carbide slag, coal gangue, geopolymer, Gaussian process regression, compressive strength prediction, strength influencing factor

中图分类号: