欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (2): 439-447.

所属专题: 水泥混凝土

• 水泥混凝土 • 上一篇    下一篇

基于人工智能算法的氯盐侵蚀混凝土预测模型

崔纪飞, 柏林, 饶平平, 康陈俊杰, 张锟   

  1. 上海理工大学土木工程系,上海 200093
  • 收稿日期:2023-09-18 修订日期:2023-11-25 出版日期:2024-02-15 发布日期:2024-02-05
  • 通信作者: 柏林,硕士研究生。E-mail:212272044@st.usst.edu.cn
  • 作者简介:崔纪飞(1991—),男,博士,讲师。主要从事桩基耐久性和承载性能时变效应的研究。E-mail:cuijifei@usst.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金(52108328);上海市“科技创新行动计划”软科学项目(22692193700);上海理工大学市级大学生创新创业训练计划(SH2023152)

Prediction Model of Chloride Erosion Concrete Based on Artificial Intelligence Algorithm

CUI Jifei, BAI Lin, RAO Pingping, KANG Chenjunjie, ZHANG Kun   

  1. Department of Civil Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2023-09-18 Revised:2023-11-25 Online:2024-02-15 Published:2024-02-05

摘要: 本文基于机器学习算法建立了输电塔桩基混凝土氯离子浓度预测模型,通过相关系数、均方根误差、绝对平均误差和方差比对模型进行检验,并根据蒙特卡洛模拟对模型的稳健性进行分析,同时基于海马优化器对模型进行优化。结果表明,支持向量机(SVM)模型、随机森林(RF)模型和梯度提升树(GBDT)模型都可以准确预测输电塔桩基混凝土中氯离子浓度,相关系数R2均大于0.880,均方根误差小于0.009,绝对平均误差小于0.006,方差比大于0.890。根据误差和稳健性分析结果,建议混凝土中氯离子浓度的预测计算优先使用GBDT模型和SVM模型。根据优化结果,海马优化器能显著提升模型的性能。

关键词: 机器学习算法, 氯离子浓度, 预测模型, 稳健性, 海马优化器

Abstract: Some prediction models of chloride ion concentration in concrete of the transmission tower pile foundations were established based on machine learning algorithm. These models were tested through correlation coefficient, root mean square error, mean absolute error and variance ratio, and the robustness of the models were analyzed according to Monte Carlo simulation. At the same time, the models were optimized based on sea-horse optimizer. The results show that the support vector machine (SVM) model, the random forest (RF) model and the gradient boosting decision tree (GBDT) model can accurately predict the chloride ion concentration in the concrete of the transmission tower pile foundations. The correlation coefficient R2 is greater than 0.880, the root mean square error is less than 0.009, the mean absolute error is less than 0.006, and the variance ratio is greater than 0.890 for all these prediction models. According to the results of error and robustness analysis, it is recommended to prioritize the use of the GBDT model and SVM model for the prediction of chloride ion concentration in concrete. According to the optimization results, the sea-horse optimizer can significantly improve performance of model.

Key words: machine learning algorithm, chloride ion concentration, prediction model, robustness, sea-horse optimizer

中图分类号: