[1] CHEN D S, DENG Y A, SHEN J Y, et al. Study on damage rules on concrete under corrosion of freeze-thaw and saline solution[J]. Construction and Building Materials, 2021, 304: 124617. [2] 苏怀智, 谢 威. 寒区水工混凝土冻融损伤及其防控研究进展[J]. 硅酸盐通报, 2021, 40(4): 1053-1071. SU H Z, XIE W. Review on frost damages of hydraulic concrete in cold region and its preventive control[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1053-1071 (in Chinese). [3] 刘恩铭, 林明强, 谢 群. 再生粗骨料混凝土抗冻性能研究进展[J]. 硅酸盐通报, 2022, 41(9): 2963-2978. LIU E M, LIN M Q, XIE Q. Research progress on frost resistance of recycled coarse aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 2963-2978 (in Chinese). [4] 王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10): 82-89. WANG S N, ZENG J J, FAN Z H. Analysis on durability of marine HPC based on long-term exposure experiment[J]. China Civil Engineering Journal, 2021, 54(10): 82-89 (in Chinese). [5] XU Y Q, YUAN Q, DAI X D, et al. Improving the freeze-thaw resistance of mortar by a combined use of superabsorbent polymer and air entraining agent[J]. Journal of Building Engineering, 2022, 52: 104471. [6] 邓祥辉, 高晓悦, 王 睿, 等. 再生混凝土抗冻性能试验研究及孔隙分布变化分析[J]. 材料导报, 2021, 35(16): 16028-16034. DENG X H, GAO X Y, WANG R, et al. Study on frost resistance and pore distribution change of recycled concrete[J]. Materials Reports, 2021, 35(16): 16028-16034 (in Chinese). [7] ZENG H Y, LAI Y M, QU S, et al. Exploring the effect of graphene oxide on freeze-thaw durability of air-entrained mortars[J]. Construction and Building Materials, 2022, 324: 126708. [8] HANG M Y, CUI L, WU J Q, et al. Freezing-thawing damage characteristics and calculation models of aerated concrete[J]. Journal of Building Engineering, 2020, 28: 101072. [9] 潘自立, 徐 键, 刘剑光, 等. 高原无砟轨道混凝土抗裂性能提升技术研究[J]. 铁道工程学报, 2021, 38(10): 37-43. PAN Z L, XU J, LIU J G, et al. Research on the improving anti-cracking performance of ballastless track bed concrete of plateau[J]. Journal of Railway Engineering Society, 2021, 38(10): 37-43 (in Chinese). [10] DUAN A, LI Z Y, ZHANG W C, et al. Flexural behaviour of reinforced concrete beams under freeze-thaw cycles and sustained load[J]. Structure and Infrastructure Engineering, 2017, 13(10): 1350-1358. [11] 曹大富, 葛文杰, 郭容邑, 等. 冻融循环作用后钢筋混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35(6): 137-144. CAO D F, GE W J, GUO R Y, et al. Experimental study on flexural behaviors of RC beams after freeze-thaw cycles[J]. Journal of Building Structures, 2014, 35(6): 137-144 (in Chinese). [12] 陆春华, 杨钰婷, 平 安, 等. 冻融作用下海工高性能混凝土梁受弯承载力试验与理论分析[J]. 土木工程学报, 2022, 55(7): 47-56. LU C H, YANG Y T, PING A, et al. Experimental and theoretical investigation on flexural capacity of marine high performance concrete beams under freeze-thaw action[J]. China Civil Engineering Journal, 2022, 55(7): 47-56 (in Chinese). [13] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development, People's Republic of China. Standard of test method for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Building Press, 2009 (in Chinese). [14] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012. Ministry of Housing and Urban-Rural Development, People's Republic of China. Standard test methods for mechanical properties of concrete: GB/T 50152—2012[S]. Beijing: China Architecture and Building Press, 2012 (in Chinese). [15] 孙丛涛, 牛荻涛. 冻融环境混凝土氯离子扩散性能试验研究[J]. 硅酸盐通报, 2014, 33(8): 1863-1869. SUN C T, NIU D T. Experimental study on chloride diffusion properties of concrete in freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 1863-1869 (in Chinese). [16] 秦 力, 丁婧楠, 朱劲松. 高掺量粉煤灰和矿渣高强混凝土抗渗性和抗冻性试验[J]. 农业工程学报, 2017, 33(6): 133-139. QIN L, DING J N, ZHU J S. Experiment on anti-permeability and frost resistance of high strength concrete with high-ratio of fly ash and slag[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 133-139 (in Chinese). [17] 刘文忠. 大掺量矿物掺合料混凝土的制备及其抗冻性研究[D]. 秦皇岛: 燕山大学, 2016: 26-27. LIU W Z. Study on preparation and frost resistance of concrete with large amount of mineral admixture[D]. Qinhuangdao: Yanshan University, 2016: 26-27 (in Chinese). [18] XIA J L, WU Z Q, SHANG R J, et al. Investigation of durability of wall materials concrete prepared with fly ash[J]. Applied Mechanics and Materials, 2012, 174/175/176/177: 657-661. [19] DU S, GE Y, SHI X M. A targeted approach of employing nano-materials in high-volume fly ash concrete[J]. Cement and Concrete Composites, 2019, 104: 103390. [20] 赵燕茹, 范晓奇, 王利强, 等. 不同冻融介质作用下混凝土力学性能衰减模型[J]. 复合材料学报, 2017, 34(2): 463-470. ZHAO Y R, FAN X Q, WANG L Q, et al. Attenuation model of mechanical properties of concrete under different freezing and thawing[J]. Acta Materiae Compositae Sinica, 2017, 34(2): 463-470 (in Chinese). [21] 王 恒, 徐义华, 姚韦靖, 等. 稻壳灰橡胶混凝土抗冻融性能及微观结构[J]. 复合材料学报, 2023, 40(5): 2951-2959. WANG H, XU Y H, YAO W J, et al. Freeze-thaw cycle and microstructure of rice husk ash rubber concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2951-2959 (in Chinese). [22] 徐长伟, 杨梦卉, 秦任远. 掺合料对引气混凝土抗冻性的影响研究[J]. 混凝土, 2013(12): 97-99. XU C W, YANG M H, QIN R Y. Research on influence of admixtures on frost-resistance of air-entraining concrete[J]. Concrete, 2013(12): 97-99 (in Chinese). [23] 邓祥辉, 曹卫平, 薛丽媛, 等. 引气再生混凝土抗冻耐久性试验与损伤模型[J]. 科学技术与工程, 2020, 20(9): 3738-3743. DENG X H, CAO W P, XUE L Y, et al. Experiment on frozen durability and damage model of air-entraining recycled concrete[J]. Science Technology and Engineering, 2020, 20(9): 3738-3743 (in Chinese). [24] 肖前慧, 牛荻涛. 冻融环境下引气粉煤灰混凝土性能研究[J]. 混凝土, 2012(7): 81-82+123. XIAO Q H, NIU D T. Study on air-entraining fly-ash concrete in freeze-thaw environment[J]. Concrete, 2012(7): 81-82+123 (in Chinese). [25] 曹大富, 富立志, 杨忠伟, 等. 冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报, 2013, 16(1): 17-23+32. CAO D F, FU L Z, YANG Z W, et al. Study on constitutive relations of compressed concrete subjected to action of freezing-thawing cycles[J]. Journal of Building Materials, 2013, 16(1): 17-23+32 (in Chinese). [26] 宋玉普, 徐秀娟, 刘 浩. 冻融循环后全级配混凝土及其湿筛混凝土的力学性能比较[J]. 水利学报, 2012, 43(1): 69-75. SONG Y P, XU X J, LIU H. Comparison of mechanical properties of fully-graded concrete and wet-screened concrete[J]. Journal of Hydraulic Engineering, 2012, 43(1): 69-75 (in Chinese). [27] LI Y G, ZHANG H M, CHEN S J, et al. Multi-scale study on the durability degradation mechanism of aeolian sand concrete under freeze-thaw conditions[J]. Construction and Building Materials, 2022, 340: 127433. [28] ÖZ A, BAYRAK B, AYDIN A C. The effect of trio-fiber reinforcement on the properties of self-compacting fly ash concrete[J]. Construction and Building Materials, 2021, 274: 121825. [29] 覃丽坤, 宋宏伟, 王秀伟. 大掺量粉煤灰混凝土在海水中冻融循环后的试验研究[J]. 混凝土, 2014(9): 12-14+18. QIN L K, SONG H W, WANG X W. Concrete experimental research on the freezing-thawing circle of high volume fly ash concrete in seawater[J]. Concrete, 2014(9): 12-14+18 (in Chinese). [30] 肖前慧, 牛荻涛, 朱文凭. 冻融环境下混凝土强度衰减模型与耐久性寿命预测[J]. 建筑结构, 2011, 41(增刊2): 203-207. XIAO Q H, NIU D T, ZHU W P. Strength degradation model and durability service life prediction of concrete in freezing-thawing circumstance[J]. Building Structure, 2011, 41(supplement 2): 203-207 (in Chinese). [31] SHANG H S, CAO W Q, WANG B. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete[J]. The Scientific World Journal, 2014, 2014: 923032. [32] 肖 阳. 引气与防水组分对混凝土渗透性与抗冻性的影响[D]. 哈尔滨: 哈尔滨工业大学, 2015. XIAO Y. Influence of air entraining and waterproof components on permeability and frost resistance of concrete[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese). [33] 过镇海. 钢筋混凝土原理[M]. 3版. 北京: 清华大学出版社, 2013. GUO Z H. Reinforced concerte theory[M]. 3rd ed. Beijing: Tsinghua University Press, 2013 (in Chinese). [34] 国家能源局. 水工混凝土结构设计规范: DL/T 5057—2009[S]. 北京: 中国电力出版社, 2009. National Energy Administration. Design specification for hydraulic concrete structures: DL/T 5057—2009[S]. Beijing: China Electric Power Press, 2009 (in Chinese). [35] WANG J B, NIU D T, HE H. Frost durability and stress-strain relationship of lining shotcrete in cold environment[J]. Construction and Building Materials, 2019, 198: 58-69. [36] 郭容邑. 冻融环境下混凝土受弯构件的试验研究[D]. 扬州: 扬州大学, 2011. GUO R Y. Experimental study on concrete flexural members in freeze-thaw environment[D]. Yangzhou: Yangzhou University, 2011 (in Chinese). [37] 关 虓, 牛荻涛, 沈可欣, 等. 气冻气融环境下钢筋混凝土梁抗冻性研究[J]. 建筑材料学报, 2016, 19(3): 461-466. GUAN X, NIU D T, SHEN K X, et al. Frost-resistance of RC beam under atmospheric freeze-thaw cycles[J]. Journal of Building Materials, 2016, 19(3): 461-466 (in Chinese). [38] 张 萌. 冻融循环对C30自密实混凝土简支梁受弯性能影响的试验研究[D]. 乌鲁木齐: 新疆大学, 2016: 56-57. ZHANG M. Experimental study on the influence of freeze-thaw cycle on bending behavior of C30 self-compacting concrete simply supported beam[D]. Urumqi: Xinjiang University, 2016: 56-57 (in Chinese). |