[1] LI V C, WANG S X, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. Aci Materials Journal, 2001: 483-492. [2] LI V C. Engineered Cementitious composites: tailored composites through micromechanical modeling[J]. Journal of Advanced Concrete Technology, 1998, 1(3): 1-38. [3] AHMARAN M, LI V C. On engineered cementitious composites (ECC): a review of the material and its applications[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 2164: 1-8. [4] ZHOU J, QIAN S Z, YE G, et al. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence[J]. Cement & Concrete Composites, 2012, 34(3): 342-348. [5] 张 聪, 曹明莉, 许 玲. 混凝土多尺度特征与多尺度纤维增强理论研究进展[J]. 混凝土与水泥制品, 2014(3): 44-48. ZHANG C, CAO M L, XU L. Research progress on multi-scale characteristics of concrete and multi-scale fiber reinforcement theory[J]. Concrete and Cement Products, 2014(3): 44-48 (in Chinese). [6] 权长青, 焦楚杰, 杨云英, 等. 混杂纤维混凝土力学性能的正交试验研究[J]. 建筑材料学报, 2019, 22(3): 8. QUAN C Q, JIAO C J, YANG Y Y, et al. Orthogonal test on mechanical properties of hybrid fiber concrete[J]. Journal of Building Materials, 2019, 22(3): 8 (in Chinese). [7] 刘雁宁, 李 辉, 李海旺. 混掺精细钢纤维/PVA纤维水泥基复合材料单轴拉伸试验及本构关系[J]. 中国科技论文, 2023, 18(4): 5. LIU Y N, LI H, LI H W. Uniaxial tensile test and constitutive relationship of mixed fine steel fiber/PVA fiber cement matrix composites[J]. Chinese Science and Technology Papers, 2023, 18(4): 5 (in Chinese). [8] YU J, CHEN Y X, LEUNG C. Mechanical performance of strain-hardening cementitious composites (SHCC) with hybrid polyvinyl alcohol and steel fibers[J]. Composite Structures, 2019, 226: 111198. [9] 曹明莉, 李 黎, 李志文, 等. CaCO3晶须对钢-聚乙烯醇混杂纤维增强水泥基复合材料板弯曲性能的影响[J]. 复合材料学报, 2017, 34(11): 10. CAO M L, LI L, LI Z W, et al. Effect of CaCO3 whiskers on flexural properties of steel-polyvinyl alcohol hybrid fiber reinforced cement-based composite plate[J]. Journal of Composites, 2017, 34(11): 10 (in Chinese). [10] 张 鹏, 亢洛宜, 郭进军, 等. 纳米SiO2和PVA纤维增强水泥基复合材料的断裂性能[J]. 建筑材料学报, 2021, 24(5): 908-915. ZHANG P, KANG L Y, GUO J J, et al. Fracture properties of nanosized SiO2 and PVA fiber reinforced cement-based composites[J]. Journal of Building Materials, 2021, 24(5): 908-915 (in Chinese). [11] KHAN M, CAO M L, ALI M. Cracking behaviour and constitutive modelling of hybrid fibre reinforced concrete[J]. Journal of Building Engineering, 2020: 101272. [12] 葛 楠, 胡卓君, 刘艳明, 等. 碳纳米纤维改性水泥基材料的变形及抗裂性能[J]. 建筑材料学报, 2022, 25(10): 1015-1020. GE N, HU Z J, LIU Y M, et al. Deformation and crack resistance of carbon nanofiber modified cement-based materials[J]. Journal of Building Materials, 2022, 25(10): 1015-1020 (in Chinese). [13] CAO M L, ZHANG C, WEI J. Microscopic reinforcement for cement based composite materials[J]. Construction & Building Materials, 2013, 40: 14-25. [14] 张玉斌, 鲍世辉, 张 聪. 混杂纤维增强超高性能透水混凝土的弯曲性能研究[J]. 硅酸盐通报, 2022, 41(6): 1955-1962. ZHANG Y B, BAO S H, ZHANG C. Study on flexural performance of hybrid fiber reinforced ultra-high performance pervious concrete[J]. Bulletin of Chinese Ceramic Society, 2012, 41(6): 1955-1962 (in Chinese). [15] 宋梦凡, 王金邦, 栾从起, 等. 碳酸钙晶须对SHCC性能的影响[J]. 混凝土, 2022(3): 14-19. SONG M F, WANG J B, LUAN C Q, et al. Effect of calcium carbonate whisker on the performance of SHCC[J]. Concrete, 2022(3): 14-19 (in Chinese). [16] 夏超凡, 李志华, 张 聪. 碳酸钙晶须对混杂纤维增强高延性水泥基复合材料力学性能的影响[J]. 功能材料, 2020, 51(1): 6. XIA C F, LI Z H, ZHANG C. Effect of calcium carbonate whisker on mechanical properties of hybrid fiber reinforced high ductility cement-based composites[J]. Journal of Functional Materials, 2019, 51(1): 6 (in Chinese). [17] 金光淋, 殷浚哲, 于 洋, 等. 碳酸钙晶须掺量对水泥砂浆力学性能的影响研究[J]. 建筑结构, 2020, 50(增刊1): 832-836. JIN G L, YIN J Z, YU Y, et al. Study on effect of calcium carbonate whisker content on mechanical properties of cement mortar[J]. Building Structures, 2020, 50(supplement 1): 832-836 (in Chinese). [18] 肖建庄, 罗素蓉, 林扬兴. 钢-PVA混杂纤维高强再生骨料混凝土断裂性能[J]. 建筑结构学报, 2020(12): 10. XIAO J Z, LUO S R, LIN Y X. Fracture performance of steel-PVA hybrid fiber high-strength recycled aggregate concrete[J]. Journal of Building Structures, 2020(12): 10 (in Chinese). [19] 高淑玲, 徐世烺. 电测法确定混凝土裂缝的临界长度[J]. 清华大学学报: 自然科学版, 2007, 47(9): 3. GAO S L, XU S L. Determination of critical length of concrete crack by electrical measurement[J]. Journal of Tsinghua University: Natural Science Edition, 2007, 47(9): 3 (in Chinese). [20] 刘子兴. 碳酸钙晶须水泥基复合材料耐磨性与抗冻性[D]. 大连: 大连理工大学, 2021. LIU Z X. Wear resistance and frost resistance of calcium carbonate whisker cement-based composites[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). [21] 黄 伟, 张阳阳, 葛进进, 等. 纳米SiO2和碳酸钙晶须制备水泥基材料性能试验[J]. 长江科学院院报, 2023, 40(1): 5. HUANG W, ZHANG Y Y, Ge J J, et al. Properties of cement-based materials prepared by nano-SiO2 and calcium carbonate whisker[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1): 5 (in Chinese). [22] 吴智敏, 徐世烺, 丁一宁, 等. 砼非标准三点弯曲梁试件双K断裂参数[J]. 中国工程科学, 2001(4): 76-81. WU Z M, XU S L, DING Y N, et al. Double K fracture parameters of concrete nonstandard three-point bending beam specimen[J]. Engineering Science, 2001(4): 76-81 (in Chinese). [23] HILLERBORG A. The theoretical basis of a method to determine the fracture energy GF of concrete[J]. Materials and Structure, 1985, 18(4): 291-296. [24] 郭向勇, 方坤河, 冷发光. 混凝土断裂能的理论分析[J]. 哈尔滨工业大学学报, 2005, 37(9): 4. GUO X Y, FANG K H, LENG F G. Theoretical Analysis of fracture energy of concrete[J]. Journal of Harbin Institute of Technology, 2005, 37(9): 4 (in Chinese). [25] 张 东, 刘娟淯, 陈 兵, 等. 关于三点弯曲法确定混凝土断裂能的分析[J]. 建筑材料学报, 1999(3): 206-211. ZHANG D, LIU J Y, CHEN B, et al. Analysis on determination of fracture energy of concrete by three-point bending method[J]. Journal of Building Materials, 1999(3): 206-211 (in Chinese). [26] 钱维民, 苏 骏, 赵家玉, 等. 超低温作用对超高韧性水泥基复合材料断裂性能的影响[J]. 建筑材料学报, 2022(9): 25. QIAN W M, SU J, ZHAO J Y, et al. Effect of ultra-low temperature on fracture properties of ultra-high toughness cement-based composites[J]. Journal of Building Materials, 2022(9): 25 (in Chinese). [27] 吴立山, 余志辉, 袁 振, 等. 高强度高延性水泥基复合材料的弯曲性能[J]. 功能材料, 2021, 52(12): 12159-12164. WU L S, YU Z H, YUAN Z, et al. Bending properties of cement-based composites with high strength and ductility[J]. Journal of Functional Materials, 2021, 52(12): 12159-12164 (in Chinese). [28] 徐世烺, 赵艳华. 混凝土裂缝扩展的断裂过程准则与解析[J]. 工程力学, 2008, 25(增刊2): 20-33. XU S L, ZHAO Y H. Fracture process criteria and analysis of concrete crack propagation[J]. Engineering Mechanics, 2008, 25(supplement 2): 20-33 (in Chinese). [29] XU S L, REINHARDT H W. Determination of double- K criterion for crack propagation in quasi-brittle fracture, part II: analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2): 151-177. [30] CAO M L, XU L, ZHANG C. Rheology, fiber distribution and mechanical properties of calcium carbonate (CaCO3) whisker reinforced cement mortar[J]. Composites Part A Applied Science and Manufacturing, 2016, 90: 662-669. [31] 邓祥辉, 高晓悦, 王 睿, 等. 再生混凝土抗冻性能试验研究及孔隙分布变化分析[J]. 材料导报, 2021, 35(16): 16028-16034. DENG X H, GAO X Y, WANG R, et al. Experimental study on frost resistance of recycled concrete and analysis of pore distribution change[J]. Materials Review, 2021, 35(16): 16028-16034 (in Chinese). [32] 赵燕茹, 喻泊厅, 王 磊, 等. 碳化对混凝土孔结构的影响[J]. 混凝土, 2021(12): 5. ZHAO Y R, YU B T, WANG L, et al. Effect of carbonization on pore structure of concrete[J]. Concrete, 2021(12): 5 (in Chinese). [33] 刘斯凤, 许贇晨, 万亭亭, 等. 冷热循环作用下EVA对混凝土孔结构的影响[J]. 建筑材料学报, 2020, 23(3): 9. LIU S F, XU Y C, WAN T T, et al. Effect of EVA on concrete pore structure under cold and heat cycling[J]. Journal of Building Materials, 2020, 23(3): 9 (in Chinese). |