硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (12): 4465-4474.
兰志丹, 任伟敏, 安楠, 彭喆, 李松
收稿日期:
2023-06-12
修订日期:
2023-08-03
出版日期:
2023-12-15
发布日期:
2023-12-12
通信作者:
彭 喆,博士研究生。E-mail:pz6191@163.com
作者简介:
兰志丹(1997—),女,硕士研究生。主要从事高温透波陶瓷材料的研究。E-mail:1416348482@qq.com
基金资助:
LAN Zhidan, REN Weimin, AN Nan, PENG Zhe, LI Song
Received:
2023-06-12
Revised:
2023-08-03
Online:
2023-12-15
Published:
2023-12-12
摘要: 陶瓷纤维隔热瓦具有密度低、耐高温、热导率低和透波性能优良等特点,适合用作航天飞行器中、低温区的热防护材料。高发射涂层应用于陶瓷纤维隔热瓦表面,可有效解决陶瓷纤维隔热瓦易吸潮、强度低和服役过程中易出现性能下降等问题,同时阻隔高温冲刷气流,提高能量反射率与抗热冲击性。本文主要介绍了陶瓷纤维隔热瓦的制备方法及性能影响因素,概括了陶瓷纤维隔热瓦及其高发射涂层在航空航天领域的研究进展,并对其未来发展进行了展望。
中图分类号:
兰志丹, 任伟敏, 安楠, 彭喆, 李松. 陶瓷纤维隔热瓦及其高发射涂层的研究进展[J]. 硅酸盐通报, 2023, 42(12): 4465-4474.
LAN Zhidan, REN Weimin, AN Nan, PENG Zhe, LI Song. Research Progress of Ceramic Fiber Insulation Tiles and Its High Emissivity Coating[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(12): 4465-4474.
[1] LINO ALVES F J, BAPTISTA A M, MARQUES A T. Metal and ceramic matrix composites in aerospace engineering[M]//Advanced Composite Materials for Aerospace Engineering. Amsterdam: Elsevier, 2016: 59-99. [2] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. [3] XIE G N, WANG Q, SUNDEN B, et al. Thermomechanical optimization of lightweight thermal protection system under aerodynamic heating[J]. Applied Thermal Engineering, 2013, 59(1/2): 425-434. [4] 王康太, 冯 坚, 姜勇刚, 等. 陶瓷纤维刚性陶瓷纤维隔热瓦研究进展[J]. 材料导报, 2011, 25(23): 35-39. WANG K T, FENG J, JIANG Y G, et al. Development of ceramic fiber rigid insulation tiles[J]. Materials Review, 2011, 25(23): 35-39 (in Chinese). [5] 郝栋连, 冯 慧, 苏 悦, 等. 高温隔热材料的研究现状及发展趋势[J]. 合成纤维工业, 2022, 45(1): 68-73. HAO D L, FENG H, SU Y, et al. Research status and development trend of high temperature thermal insulation materials[J]. China Synthetic Fiber Industry, 2022, 45(1): 68-73 (in Chinese). [6] 郭琳琳, 陶 鑫, 郭安然, 等. 刚性陶瓷陶瓷纤维隔热瓦涂层的发展及其表面性质[J]. 材料导报, 2016, 30(19): 119-126. GUO L L, TAO X, GUO A R, et al. Coatings on rigid ceramic insulations: evolution and surface properties[J]. Materials Review, 2016, 30(19): 119-126 (in Chinese). [7] 高广睿, 厉 英, 呼 丹, 等. 红外高发射率涂层的研究进展[J]. 材料导报, 2018, 32(增刊1): 238-241. GAO G R, LI Y, HU D, et al. A review on the high infrared emissivity coatings[J]. Materials Review, 2018, 32(supplement 1): 238-241 (in Chinese). [8] 蔡德龙, 陈 斐, 何凤梅, 等. 高温透波陶瓷材料研究进展[J]. 现代技术陶瓷, 2019, 40(增刊1): 4-120. CAI D L, CHEN F, HE F M, et al. Recent progress and prospestion on high temperature wave-transparent ceramic materials[J]. Advanced Ceramics, 2019, 40(supplement 1): 4-120 (in Chinese). [9] SHEN S B, ZHAO Y N, DU H Y, et al. Mullite fiber sealing pad with favorable high temperature rebound resilience fabricated through colloidal processing[J]. Ceramics International, 2014, 40(6): 8905-8909. [10] DONG X E, LIU J C, HOU Z G, et al. Mechanical evaluation of the porous ceramics prepared by filtration with a framework structure of the polycrystalline fibers[J]. Materials Science Forum, 2013, 745/746: 565-570. [11] 刘瑞祥. 氧化硅-氧化铝复合高温陶瓷纤维隔热瓦的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. LIU R X. Study on preparation and properties of silica-alumina composite high temperature insulating tile[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese). [12] DONG X, SUI G F, YUN Z Q, et al. Effect of temperature on the mechanical behavior of mullite fibrous ceramics with a 3D skeleton structure prepared by molding method[J]. Materials & Design, 2016, 90: 942-948. [13] 任海涛, 贾 韬, 刘家臣, 等. 具有三维网络结构的莫来石纤维多孔隔热材料的制备及性能研究[J]. 航空科学技术, 2018, 29(4): 73-78. REN H T, JIA T, LIU J C, et al. Preparation and performance of mullite fiber porous insulation material with three-dimensional network structure[J]. Aeronautical Science & Technology, 2018, 29(4): 73-78 (in Chinese). [14] ZHANG R B, HOU X B, YE C S, et al. Fabrication and properties of fibrous porous mullite-zirconia fiber networks with a quasi-layered structure[J]. Journal of the European Ceramic Society, 2016, 36(14): 3539-3544. [15] MA X H, HU X X, DU H Y, et al. An unoriented three dimension framework (network) of fibrous porous ceramics prepared by freeze casting[J]. Journal of the European Ceramic Society, 2016, 36(3): 797-803. [16] HU X X, YANG L N, LI L Y, et al. Freeze casting of composite system with stable fiber network and movable particles[J]. Journal of the European Ceramic Society, 2016, 36(16): 4147-4153. [17] HOU Z G, DU H Y, LIU J C, et al. Fabrication and properties of mullite fiber matrix porous ceramics by a TBA-based gel-casting process[J]. Journal of the European Ceramic Society, 2013, 33(4): 717-725. [18] ZHANG J, DONG X, HOU F, et al. Effect of mullite fiber content on the microstructure and properties of porous mullite fiber/silica composite[J]. Ceramics International, 2016, 42(5): 6520-6524. [19] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. [20] ZHANG F, LI Z A, XU M J, et al. A review of 3D printed porous ceramics[J]. Journal of the European Ceramic Society, 2022, 42(8): 3351-3373. [21] ZHAO Z, ZHOU G X, YANG Z H, et al. Direct ink writing of continuous SiO2 fiber reinforced wave-transparent ceramics[J]. Journal of Advanced Ceramics, 2020, 9(4): 403-412. [22] CHEN Z, SUN X H, SHANG Y P, et al. Dense ceramics with complex shape fabricated by 3D printing: a review[J]. Journal of Advanced Ceramics, 2021, 10(2): 195-218. [23] CAO Y Q, XU X J, QIN Z, et al. Vat photopolymerization 3D printing of thermal insulating mullite fiber-based porous ceramics[J]. Additive Manufacturing, 2022, 60: 103235. [24] ZHU W, GUO A, XUE Y, et al. Mechanical evaluations of mullite fibrous ceramics processed by filtration and in situ pyrolysis of organic precursor[J]. Journal of the European Ceramic Society, 2019, 39(4): 1329-1335. [25] ZANG W J, GUO F, LIU J C, et al. Lightweight alumina based fibrous ceramics with different high temperature binder[J]. Ceramics International, 2016, 42(8): 10310-10316. [26] YANG J E, LIU R X, SUI X Y, et al. Effect of binders on preparation of high temperature rigid thermal insulation materials[J]. Key Engineering Materials, 2016, 697: 453-456. [27] HE F, LI W J, ZHOU L, et al. Preparation and characterization of the three-dimensional network mullite porous fibrous materials by pressure and freeze-casting method[J]. Ceramics International, 2019, 45(3): 3954-3960. [28] 马晓晖. 冷冻浇铸法制备莫来石纤维多孔陶瓷及其高温结构稳定性[D]. 天津: 天津大学, 2016. MA X H. Preparation of mullite fiber porous ceramics by freezing casting and its structural stability at high temperature[D]. Tianjin: Tianjin University, 2016 (in Chinese). [29] ZHANG J, DONG X, HOU F, et al. Effects of fiber length and solid loading on the properties of lightweight elastic mullite fibrous ceramics[J]. Ceramics International, 2016, 42(4): 5018-5023. [30] ZHANG Y, WU Y J, YANG X K, et al. High-strength thermal insulating mullite nanofibrous porous ceramics[J]. Journal of the European Ceramic Society, 2020, 40(5): 2090-2096. [31] DONG Y, DONG X, LI L, et al. Lightweight and thermally insulating aluminum borate nanofibrous porous ceramics[J]. Ceramics International, 2021, 47(15): 21029-21037. [32] 李 刚, 欧书方, 赵敏健. 石英玻璃纤维的性能和用途[J]. 玻璃纤维, 2007(4): 9-13+16. LI G, OU S F, ZHAO M J. Properties and uses of quartz glass fiber[J]. Fiber Glass, 2007(4): 9-13+16 (in Chinese). [33] 罗 萌, 向 阳, 彭志航, 等. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72. LUO M, XIANG Y, PENG Z H, et al. Research progress of fiber porous ceramics[J]. Journal of Materials Engineering, 2022, 50(11): 63-72 (in Chinese). [34] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite: a review[J]. Journal of the European Ceramic Society, 2008, 28(2): 329-344. [35] YANG M M, LUO X D, YI J, et al. A novel way to fabricate fibrous mullite ceramic using sol-gel vacuum impregnation[J]. Ceramics International, 2018, 44(11): 12664-12669. [36] 汪家铭, 孔亚琴. 氧化铝纤维发展现状及应用前景[J]. 高科技纤维与应用, 2010, 35(4): 49-54. WANG J M, KONG Y Q. Development present condition and application prospect of alumina fiber[J]. Hi-Tech Fiber & Application, 2010, 35(4): 49-54 (in Chinese). [37] CHEN A N, WU J M, LIU Y X, et al. Fabrication of porous fibrous alumina ceramics by direct coagulation casting combined with 3D printing[J]. Ceramics International, 2018, 44(5): 4845-4852. [38] 徐 雷, 张昭环, 李 博, 等. 人造陶瓷纤维的研究进展[J]. 合成纤维工业, 2021, 44(6): 76-80. XU L, ZHANG Z H, LI B, et al. Research progress of man-made ceramic fiber[J]. China Synthetic Fiber Industry, 2021, 44(6): 76-80 (in Chinese). [39] BEASLEY R M, IZU Y D, NAKANO H N, et al. Fabrication and improvement of LMSC’s all-silica RSI[J]. Techn Report NASA TMX-2719, 1973(1): 1. [40] GREEN D J. Fracture toughness/young’s modulus correlation for low-density fibrous silica bodies[J]. Journal of the American Ceramic Society, 1983, 66(4): 288-292. [41] 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 023716. HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials: application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 023716 (in Chinese). [42] 咸 良. 莫来石纤维多孔陶瓷基防隔热组件的制备与性能研究[D]. 天津: 天津大学, 2019. XIAN L. Study on preparation and performance of mullite fiber porous ceramic-based heat insulation module[D]. Tianjin: Tianjin University, 2019 (in Chinese). [43] YANG Y, FU W, CHEN X, et al. Fabrication of homogeneous mullite-based fiber porous ceramics with high strength and porosity[J]. Journal of the European Ceramic Society, 2022, 42(15): 7219-7227. [44] 王衍飞, 张长瑞, 冯 坚, 等. SiO2气凝胶/短切石英纤维多孔骨架复合材料的制备与性能[J]. 硅酸盐学报, 2009, 37(2): 234-237. WANG Y F, ZHANG C R, FENG J, et al. Fabrication and properties of SiO2-aerogel/short silica fiber porous skeleton composite[J]. Journal of the Chinese Ceramic Society, 2009, 37(2): 234-237 (in Chinese). [45] 赵小玻, 魏美玲, 刘瑞祥, 等. 石英纤维复合隔热材料及其制备方法: CN101659557A[P]. 2010-03-03. ZHAO X B, WEI M L, LIU R X, et al. Quartz fiber composite thermal insulation material and its preparation method: CN101659557A[P]. 2010-03-03 (in Chinese). [46] 朱庆霞, 梁华银, 丁志坚. 莫来石纤维多孔陶瓷的制备与性能[J]. 中国陶瓷, 2006, 42(10): 7-9. ZHU Q X, LIANG H Y, DING Z J. The process and properties of the mullite fibrous porous ceramic[J]. China Ceramics, 2006, 42(10): 7-9 (in Chinese). [47] ZANG W J, JIA T, DONG X E, et al. Preparation of homogeneous mullite-based fibrous ceramics by starch consolidation[J]. Journal of the American Ceramic Society, 2018, 101(7): 3138-3147. [48] DONG X, LIU J C, HAO R H, et al. High temperature elasticity of fibrous ceramics with a bird’s nest structure[J]. Journal of the European Ceramic Society, 2013, 33(15/16): 3477-3481. [49] 孙晶晶, 王晓婷, 宋兆旭, 等. 陶瓷陶瓷纤维隔热瓦轻量化制备[J]. 宇航材料工艺, 2018, 48(6): 34-39. SUN J J, WANG X T, SONG Z X, et al. Lightweighting fabrication of ceramic insulating tiles[J]. Aerospace Materials & Technology, 2018, 48(6): 34-39 (in Chinese). [50] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5): 311-390. CHEN Y F, HONG C Q, HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics, 2017, 38(5): 311-390 (in Chinese). [51] 黄秀波, 张 凡, 赵英民, 等. Al2O3基多孔隔热材料表面Al2O3/MoSi2涂层的制备及其性能[J]. 复合材料学报, 2020, 37(11): 2870-2876. HUANG X B, ZHANG F, ZHAO Y M, et al. Preparation and properties of Al2O3/MoSi2 coating on Al2O3 base porous insulation materials[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2870-2876 (in Chinese). [52] XU B S, DU Y, WANG P, et al. Microstructure, surface emissivity and ablation resistance of multilayer coating for lightweight and porous carbon-bonded carbon fiber composites[J]. Journal of Alloys and Compounds, 2016, 685: 799-805. [53] ZHANG G L, XUE Y J, LIU P S, et al. High emissivity double-layer coating on the flexible aluminum silicate fiber fabric with enhanced interfacial bonding strength and high temperature resistance[J]. Journal of the European Ceramic Society, 2021, 41(2): 1452-1458. [54] TAO X, LI X T, GUO L L, et al. Effect of TaSi2 content on the structure and properties of TaSi2-MoSi2-borosilicate glass coating on fibrous insulations for enhanced surficial thermal radiation[J]. Surface & Coatings Technology, 2017, 316: 122-130. [55] LI M, SUN Y, ZENG G, et al. Study on sintering behavior of reaction-cured glass coating[J]. Coatings, 2023, 13(2): 463. [56] WANG Y C, SU D, JI H M, et al. Gradient structure high emissivity MoSi2-SiO2-SiOC coating for thermal protective application[J]. Journal of Alloys and Compounds, 2017, 703: 437-447. [57] FEI X A, NIU Y R, JI H, et al. Oxidation behavior of Al2O3 reinforced MoSi2 composite coatings fabricated by vacuum plasma spraying[J]. Ceramics International, 2010, 36(7): 2235-2239. [58] SHAO G F, WU X D, KONG Y, et al. Microstructure, radiative property and thermal shock behavior of TaSi2-SiO2-borosilicate glass coating for fibrous ZrO2 ceramic insulation[J]. Journal of Alloys and Compounds, 2016, 663: 360-370. [59] GUO L L, LI Y, HU X X, et al. Microstructure evolution and bonding mechanisms of silica sol bonded coating at elevated temperatures[J]. Journal of the European Ceramic Society, 2020, 40(15): 5051-5058. [60] SHAO G, WU X D, KONG Y, et al. Thermal shock behavior and infrared radiation property of integrative insulations consisting of MoSi2/borosilicate glass coating and fibrous ZrO2 ceramic substrate[J]. Surface & Coatings Technology, 2015, 270: 154-163. [61] XIAN L, TAO X, DONG W, et al. Gradient MoSi2-borosilicate glass high emissivity coating with enhanced contact and impact damage resistance[J]. Ceramics International, 2018, 44(14): 16333-16341. [62] WU J Y, XU X J, XIONG Y L, et al. Preparation and structure control of a scalelike MoSi2-borosilicate glass coating with improved contact damage and thermal shock resistance[J]. Ceramics International, 2020, 46(6): 7178-7186. [63] GUO L L, TAO X, GONG Z, et al. Preparation of MoSi2-SiC-Al2O3-SiO2 coating on mullite fibrous insulation with silica sol as binder by non-firing process[J]. Ceramics International, 2019, 45(2): 2602-2611. [64] 牟善浩, 魏美玲, 周长灵, 等. 免烧耐温1 500 ℃的刚性陶瓷纤维隔热瓦涂层及其制备方法: CN107603286B[P]. 2019-08-09. MOU S H, WEI M L, ZHOU C L, et al. Unburned 1 500 ℃ temperature resistant rigid insulation tile coating and its preparation method: CN107603286B[P]. 2019-08-09 (in Chinese). |
[1] | 董博, 闵昌胜, 陈博, 邓承继, 谢哲, 杨千秋, 丁军, 祝洪喜, 杨昕雨, 余超. 陶瓷相结合粉煤灰漂珠轻质隔热材料的制备及性能研究[J]. 硅酸盐通报, 2022, 41(9): 3315-3323. |
[2] | 仲心卓, 李路帆, 姜义, 林忠财. 钢渣加速碳化制品的耐高温性能研究[J]. 硅酸盐通报, 2021, 40(11): 3677-3684. |
[3] | 潘孟博, 李祥, 戚文豪, 杜浩然, 吴晓鹏, 赵飞, 马成良. 烧成工艺对花岗岩基轻质隔热材料性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3226-3231. |
[4] | 杜浩然, 邢益强, 李祥, 陈凯阳, 王世界, 马成良. 纤维和遮光剂对纳米孔粉体隔热材料性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3257-3264. |
[5] | 尚佳琪, 刘浩, 王周福, 杨智谦, 陈森娜, 马妍, 王玺堂. 硼酸铝-六钛酸钾晶须复合隔热材料制备与性能[J]. 硅酸盐通报, 2021, 40(10): 3273-3278. |
[6] | 王琦琦;刘作冬;于永生;朱盛辉;刘鹏. 低品位钾长石制备多孔保温隔热陶瓷研究[J]. 硅酸盐通报, 2020, 39(7): 2267-2273. |
[7] | 汪波;刘浩;王周福;王玺堂;马妍. 氧化镧对CaO-MgO-SiO2系陶瓷纤维结构与性能的影响[J]. 硅酸盐通报, 2020, 39(3): 916-922. |
[8] | 郑彧;韦中华;张阳;张跃;童亚琦;张伟儒. 多孔二氧化锆基隔热材料的制备及性能[J]. 硅酸盐通报, 2020, 39(11): 3643-3648. |
[9] | 吴栋;万志军;张洪伟;张源;王子琦;路宁. 矿用新型隔热材料性能实验研究[J]. 硅酸盐通报, 2019, 38(6): 1878-188. |
[10] | 华晓青;萧礼标;薛群虎. 响应面法优化玄武岩陶瓷纤维分散的工艺参数[J]. 硅酸盐通报, 2019, 38(6): 1953-195. |
[11] | 王开宇;刘瑞祥;李秀涛;亓鲁鸣;步小燕;隋学叶;周长灵;栾强. 轻质刚性隔热材料的制备及性能研究[J]. 硅酸盐通报, 2019, 38(11): 3529-353. |
[12] | 计延琦;朱时珍;马壮;柳彦博. 玻璃成分对MoSi2-SiB6-玻璃高发射涂层性能的影响[J]. 硅酸盐通报, 2019, 38(10): 3221-322. |
[13] | 王洪红;刘浩;田杨;王周福;王玺堂;马妍. 热处理对CaO-MgO-SiO2陶瓷纤维生物溶解行为的影响[J]. 硅酸盐通报, 2017, 36(7): 2254-2258. |
[14] | 曹集舒. 硅酸盐水泥耐高温性能研究[J]. 硅酸盐通报, 2017, 36(4): 1452-1456. |
[15] | 庞超明;吕梦媛;孙友康. 核壳结构免烧轻骨料的制备与性能研究[J]. 硅酸盐通报, 2016, 35(7): 2121-2127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||