[1] HOLAND W, BEALL G H. Glass-ceramic technology[M]. 3rd ed. Hoboken, USA: John Wiley & Sons Inc, 2020, 279-308. [2] 卢安贤, 胡晓林, 郝小军. 高结晶度透明微晶玻璃研究新进展[J]. 中国材料进展, 2016, 35(12): 927-931. LU A X, HU X L, HAO X J. Present progress in the research of high crystallinity and transparent glass ceramics[J]. Materials China, 2016, 35(12): 927-931 (in Chinese). [3] FERNANDES J S, GENTILE P, PIRES R A, et al. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue[J]. Acta Biomaterialia, 2017, 59: 2-11. [4] 张 浩, 朱永昌, 崔 竹, 等. 锂铝硅系光敏微晶玻璃的研究进展和应用[J]. 材料导报, 2018, 32(增刊2): 80-84. ZHANG H, ZHU Y C, CUI Z, et al. Research progress and applications of photosensitive glass-ceramics of Li2O-Al2O3-SiO2 system[J]. Materials Review, 2018, 32(supplement 2): 80-84 (in Chinese). [5] 任 晶, 卢小送, 王鹏飞. 硫系发光微晶玻璃研究进展[J]. 光子学报, 2019, 48(11): 86-93. REN J, LU X S, WANG P F. Research progress in fluorescent chalcogenide glass ceramics[J]. Acta Photonica Sinica, 2019, 48(11): 86-93 (in Chinese). [6] MIOLA M, PAKZAD Y, BANIJAMALI S, et al. Glass-ceramics for cancer treatment: so close, or yet so far?[J]. Acta Biomaterialia, 2019, 83: 55-70. [7] FU L, ENGQVIST H, XIA W. Glass-ceramics in dentistry: a review[J]. Materials, 2020, 13(5): 1049. [8] 卢小送, 王 慈, 高志刚, 等. 稀土上转换发光氟硅酸盐微晶玻璃研究进展[J]. 发光学报, 2022, 43(11): 1758-1778. LU X S, WANG C, GAO Z G, et al. Research progress of rare earth upconversion luminescent fluorosilicate glass-ceramics[J]. Chinese Journal of Luminescence, 2022, 43(11): 1758-1778 (in Chinese). [9] WANG J, WANG M T, TIAN Y, et al. A review on photocatalytic glass ceramics: fundamentals, preparation, performance enhancement and future development[J]. Catalysts. 2022, 12(10): 1235. [10] LIN L Y, GUO W, LI M J, et al. Progress and perspective of glass-ceramic solid-state electrolytes for lithium batteries[J]. Materials, 2023, 16(7): 2655. [11] 李 杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 2版. 北京: 首都经济贸易大学出版社, 2017. LI J, CHEN C M. CiteSpace: text mining and visualization in scientific literature[M]. 2nd ed. Beijing: Capital University of Economics and Business Press, 2017 (in Chinese). [12] 张子婷, 郑彦宁, 袁 芳. 多指标核心作者识别方法研究[J]. 现代情报, 2020, 40(7): 144-151. ZHANG Z T, ZHENG Y N, YUAN F. Research on multiple-indicators method on identifying the core authors[J]. Journal of Modern Information, 2020, 40(7): 144-151 (in Chinese). [13] CHEN D Q, WANG Z Y, ZHOU Y, et al. Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: structural characterization, tunable luminescence and temperature sensing behavior[J]. Journal of Alloys and Compounds, 2015, 646: 339-344. [14] CHEN D Q, ZHOU Y, WAN Z Y, et al. Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping[J]. Dalton Transactions, 2015, 44(12): 5288-5293. [15] CHEN D Q, LIU S, LI X Y, et al. Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+: YF3 nanocrystals embedded glass ceramic[J]. Journal of the European Ceramic Society, 2017, 37(15): 4939-4945. [16] LI X Y, CHEN X A, YUAN S, et al. Eu3+-doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence[J]. Journal of Materials Chemistry C, 2017, 5(39): 10201-10210. [17] HUANG X Y, CHEN D Q, LIN L, et al. Infrared quantum cutting in Er3+: NaYF4 nanostructured glass ceramics for solar cells[J]. Optik, 2014, 125(1): 565-568. [18] ZHANG R, LIN H, CHEN D Q, et al. Integrated broadband near-infrared luminescence in transparent glass ceramics containing γ-Ga2O3: Ni2+ and β-YF3: Er3+ nanocrystals[J]. Journal of Alloys and Compounds, 2013, 552: 398-404. [19] STAMBOULI W, ELHOUICHET H, GELLOZ B, et al. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics[J]. Journal of Luminescence, 2013, 138: 201-208. [20] CHENU S, VÉRON E, GENEVOIS C, et al. Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics[J]. Journal of Materials Chemistry C, 2014, 2(46): 10002-10010. [21] TARAFDER A, MOLLA A R, MUKHOPADHYAY S, et al. Fabrication and enhanced photoluminescence properties of Sm3+-doped ZnO-Al2O3-B2O3-SiO2 glass derived willemite glass-ceramic nanocomposites[J]. Optical Materials, 2014, 36(9): 1463-1470. [22] TARAFDER A, MOLLA A R, DEY C, et al. Thermal, structural, and enhanced photoluminescence properties of Eu3+-doped transparent willemite glass-ceramic nanocomposites[J]. Journal of the American Ceramic Society, 2013, 96(8): 2424-2431. [23] EFFENDY N, ABDUL WAHAB Z, MOHAMED KAMARI H, et al. Structural and optical properties of Er3+-doped willemite glass-ceramics from waste materials[J]. Optik, 2016, 127(24): 11698-11705. [24] BAGHBANI F, MOZTARZADEH F, MOZAFARI M, et al. Production and characterization of a Ag- and Zn-doped glass-ceramic material and in vitro evaluation of its biological effects[J]. Journal of Materials Engineering and Performance, 2016, 25(8): 3398-3408. [25] BEJARANO J, CAVIEDES P, PALZA H. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics[J]. Biomedical Materials, 2015, 10(2): 025001. [26] CHEN Q, BAINO F, SPRIANO S, et al. Modelling of the strength-porosity relationship in glass-ceramic foam scaffolds for bone repair[J]. Journal of the European Ceramic Society, 2014, 34(11): 2663-2673. [27] MOLINO G, BARI A, BAINO F, et al. Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass-ceramic scaffolds for bone tissue regeneration[J]. Journal of Materials Science, 2017, 52(15): 9103-9114. [28] ELSAKA S E, ELNAGHY A M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic[J]. Dental Materials, 2016, 32(7): 908-914. [29] HAYASHI A, NOI K, TANIBATA N, et al. High sodium ion conductivity of glass-ceramic electrolytes with cubic Na3PS4[J]. Journal of Power Sources, 2014, 258: 420-423. [30] SHIN B R, NAM Y J, OH D Y, et al. Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes[J]. Electrochimica Acta, 2014, 146: 395-402. [31] DING L F, NING W, WANG Q W, et al. Preparation and characterization of glass-ceramic foams from blast furnace slag and waste glass[J]. Materials Letters, 2015, 141: 327-329. [32] LI B W, DU Y S, ZHANG X F, et al. Crystallization characteristics and properties of high-performance glass-ceramics derived from Baiyunebo east mine tailing[J]. Environmental Progress & Sustainable Energy, 2015, 34(2): 420-426. [33] 胡 斌. 高介电常数透明微晶玻璃的研究[D]. 北京: 中国科学院大学, 2020. HU B. Study on transparent glass ceramics with high dielectric constant[D]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese). [34] CHEN X, ZHANG H B, JIA W T, et al. Preparation and luminescence properties of Eu2O3 doped glass ceramics containing Na3Gd(PO4)2[J]. Optik, 2021, 238: 166778. [35] GUO Z H, WANG L Y, LV H M, et al. Preparation and luminescence properties of Tb3+ doped and Tb3+/Sm3+ co-doped Na3Y(PO4)2 crystalline glass ceramics[J]. Materials Science and Engineering: B, 2021, 272: 115352. [36] WANG Q W, YU X M, WANG T, et al. Tb4O7-Sm2O3 co-doped glass ceramics containing Ba3Gd(PO4)3: preparation, tunable emission and temperature sensing properties[J]. Journal of Alloys and Compounds, 2022, 927: 167020. [37] WANG T, WANG S Y, ZHANG H B, et al. Tm3+-Dy3+-Eu3+ tri-doped transparent glass-ceramics containing NaY(MoO4)2 crystal phase: preparation, energy transfer, warm white light emitting[J]. Optical Materials, 2020, 104: 109851. [38] WANG S Y, WANG T, ZHANG H B, et al. Eu3+ doped glass ceramics containing NaLa(MoO4)2 crystallite: preparation, structure and luminescence properties[J]. Journal of Luminescence, 2020, 226: 117420. [39] YAN Y M, ZHANG H B, HUO H H, et al. Luminescence and energy transfer of Dy3+-Eu3+ co-doped glass-ceramics containing ZnMoO4[J]. Journal of Alloys and Compounds, 2022, 897: 163164. [40] YU X M, ZHAO T L, WANG T, et al. Up-conversion luminescence properties of Ho3+-Yb3+ co-doped transparent glass ceramics containing Y2Ti2O7[J]. Journal of Non-Crystalline Solids, 2021, 574: 121163. [41] JIA F Y, XU S N, ZHANG G D, et al. Effect of Mg2+/Sr2+ addition on luminescence properties of Dy3+ doped glass ceramics containing Ca2Ti2O6[J]. Optical Materials, 2022, 131: 112715. [42] WEI Y L, ZHANG H B, SU C H, et al. Luminescence and preparation of Dy2O3 doped SrCO3-WO3-SiO2 glass ceramics[J]. Journal of Luminescence, 2020, 220: 117021. [43] LUO G M, CHEN J, ZOU X Y, et al. Eu3+ doped K2O-B2O3-Al2O3-SiO2 glass ceramics containing KAlSiO4 crystalline phase: realizing red emission and high thermal stability[J]. Optik, 2022, 267: 169766. [44] JIA W T, SU C H, WEI Y L, et al. Luminescence properties and energy transfer of Sm3+/Tb3+ co-doped glass ceramics containing Na9YSi6O18[J]. Journal of Luminescence, 2019, 215: 116576. [45] WANG S J, TIAN J, YANG K, et al. Crystallization kinetics behavior and dielectric energy storage properties of strontium potassium niobate glass-ceramics with different nucleating agents[J]. Ceramics International, 2018, 44(7): 8528-8533. [46] YANG K, LIU J R, SHEN B, et al. Effects of TiO2 addition on dielectric and energy storage properties of BaO-K2O-Nb2O5-SiO2 glass ceramics[J]. Ceramics International, 2018, 44(6): 6181-6185. [47] LIU J R, YANG K, ZHAI J W, et al. Effects of crystallization temperature on phase evolution and energy storage properties of BaO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics[J]. Journal of the European Ceramic Society, 2018, 38(5): 2312-2317. [48] XIE S F, LIU C S, BAI H R, et al. Simultaneously ultra-low dielectric loss and rapid discharge time in Ta2O5 doped niobate-based glass-ceramics[J]. Journal of Materials Science, 2021, 56(29): 16278-16289. [49] LIU J H, WANG H T, ZHAI J W, et al. Crystallization mechanisms and energy-storage performances in BaO-SrO-Na2O-Nb2O5 based glass-ceramics[J]. Journal of Electronic Materials, 2018, 47(12): 7429-7434. [50] CHEN K K, BAI H R, YAN F, et al. Achieving superior energy storage properties and ultrafast discharge speed in environment-friendly niobate-based glass ceramics[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4236-4243. [51] LIU C S, XIE S F, BAI H R, et al. Excellent energy storage performance of niobate-based glass-ceramics via introduction of nucleating agent[J]. Journal of Materiomics, 2022, 8(4): 763-771. [52] XING J H, SHANG F, CHEN G H. Upconversion luminescence of Yb3+/Er3+ co-doped NaSrPO4 glass ceramic for optical thermometry[J]. Ceramics International, 2021, 47(6): 8330-8337. [53] XING J H, SHANG F, LI L, et al. Structure, up-conversion luminescence and optical temperature sensitive properties of glass ceramics containing Ca5(PO4)3F with double luminescence centers[J]. Ceramics International, 2022, 48(1): 1098-1106. [54] CUI S C, CHEN G H. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped Sr10(PO4)6O transparent glass-ceramics[J]. Journal of the American Ceramic Society, 2020, 103(12): 6932-6940. [55] XING J H, LIU L M, SHANG F, et al. Preparation, structure and temperature dependence of spectral properties of Yb3+/Er3+ doped Sr5(PO4)3F transparent glass ceramics[J]. Journal of Alloys and Compounds, 2021, 884: 161018. [56] SHANG F, CHEN Y, XU J W, et al. Up-conversion luminescence and highly sensing characteristics of Er3+/Yb3+ co-doped borophosphate glass-ceramics[J]. Optics Communications, 2019, 441: 38-44. [57] LUO F, XING J H, QIN Y Y, et al. Up-conversion luminescence, temperature sensitive and energy storage performance of lead-free transparent Yb3+/Er3+ co-doped Ba2NaNb5O15 glass-ceramics[J]. Journal of Alloys and Compounds, 2022, 910: 164859. [58] XING J H, QIN L N, TANG J, et al. Enhanced upconversion luminescence and temperature sensing feature in NaBi(MoO4)2: Er3+, Yb3+ transparent glass ceramics[J]. Journal of Non-Crystalline Solids, 2022, 576: 121267. [59] GAO Z X, TIAN B, LIU M Y, et al. Luminescence and temperature-dependent sensitivity of Yb3+/Er3+ doped glass ceramics containing NaGd(MoO4)2 nanocrystals[J]. Journal of Non-Crystalline Solids, 2023, 603: 122114. [60] KARGOZAR S, MOZAFARI M, GHODRAT S, et al. Copper-containing bioactive glasses and glass-ceramics: from tissue regeneration to cancer therapeutic strategies[J]. Materials Science and Engineering: C, 2021, 121: 111741. [61] FIUME E, MIGNECO C, VERNÉ E, et al. Comparison between bioactive sol-gel and melt-derived glasses/glass-ceramics based on the multicomponent SiO2-P2O5-CaO-MgO-Na2O-K2O system[J]. Materials, 2020, 13(3): 540. [62] BORGES R, MENDONÇA-FERREIRA L, RETTORI C, et al. New sol-gel-derived magnetic bioactive glass-ceramics containing superparamagnetic hematite nanocrystals for hyperthermia application[J]. Materials Science and Engineering: C, 2021, 120: 111692. [63] ZHANG J J, ZHANG X Y, YUAN J S, et al. Hierarchically porous glass-ceramics by alkaline activation and crystallization from municipal solid waste incineration ashes[J]. Journal of Cleaner Production, 2022, 364: 132693. [64] ELSAYED H, RINCÓN R A, MOLINO G, et al. Bioactive glass-ceramic foam scaffolds from ‘inorganic gel casting’ and sinter-crystallization[J]. Materials, 2018, 11(3): 349. |