[1] 杨 欢, 牛季收. 自密实高性能混凝土的研究现状[J]. 硅酸盐通报, 2015, 34(增刊1): 207-210. YANG H, NIU J S. Research statue of self-compacting concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(supplement 1): 207-210 (in Chinese). [2] 罗素蓉, 郑建岚, 王国杰, 等. 自密实高性能混凝土结构的研究与应用[J]. 土木工程学报, 2005, 38(4): 46-52. LUO S R, ZHENG J L, WANG G J, et al. Research on and application of self-compacting high performance concrete structures[J]. China Civil Engineering Journal, 2005, 38(4): 46-52 (in Chinese). [3] MALAZDREWICZ S, ADAM O K, SADOWSKI Ł. Self-compacting concrete with recycled coarse aggregates from concrete construction and demolition waste current state-of-the art and perspectives[J]. Construction and Building Materials, 2023, 370: 130702. [4] MELO K A, CARNEIRO A M P. Effect of metakaolin's finesses and content in self-consolidating concrete[J]. Construction and Building Materials, 2010, 24(8): 1529-1535. [5] SUA-IAM G, MAKUL N. Recycling prestressed concrete pile waste to produce green self-compacting concrete[J]. Journal of Materials Research and Technology, 2023, 24: 4587-4600. [6] 仇益梅, 王育宏, 陈君翔, 等. C50自密实高性能混凝土配合比设计及工程应用[J]. 世界桥梁, 2011, 39(4): 61-64. QIU Y M, WANG Y H, CHEN J X, et al. Mix proportioning design and engineering application of C50 self-compacting high performance concrete[J]. World Bridges, 2011, 39(4): 61-64 (in Chinese). [7] 周 梅, 纪成君, 高洪江. 矿物质细粉复掺配制高性能混凝土的均匀试验研究[J]. 硅酸盐通报, 2005, 24(4): 31-35. ZHOU M, JI C J, GAO H J. Uniform test of mineral power HPC[J]. Bulletin of the Chinese Ceramic Society, 2005, 24(4): 31-35 (in Chinese). [8] 王 辉, 刘旭辉, 蔡升宇, 等. 粉煤灰掺量对高性能自密实混凝土抗压强度发展影响分析[J]. 硅酸盐通报, 2021, 40(5): 1573-1578. WANG H, LIU X H, CAI S Y, et al. Influence of fly ash content on compressive strength development of high performance self-compacting concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1573-1578 (in Chinese). [9] ÇELIK Z. Investigation of the use of ground raw vermiculite as a supplementary cement materials in self-compacting mortars: comparison with class C fly ash[J]. Journal of Building Engineering, 2023, 65: 105745. [10] LEEMANN A, LOSER R, MÜNCH B. Influence of cement type on ITZ porosity and chloride resistance of self-compacting concrete[J]. Cement and Concrete Composites, 2010, 32(2): 116-120. [11] FELEKOĞLU B, TOSUN K, BARADAN B, et al. The effect of fly ash and limestone fillers on the viscosity and compressive strength of self-compacting repair mortars[J]. Cement and Concrete Research, 2006, 36(9): 1719-1726. [12] TÜRK E, KARATAŞ M, DENER M. Rheological, mechanical and durability properties of self-compacting mortars containing basalt powder and silica fume[J]. Construction and Building Materials, 2022, 356: 129229. [13] 刘 扬, 陈 湘, 王柏文, 等. 碱激发粉煤灰-矿渣-电石渣基地聚物的制备及强度机理[J]. 硅酸盐通报, 2023, 42(4): 1353-1362. LIU Y, CHEN X, WANG B W, et al. Preparation and strength mechanism of alkali-activated fly ash-slag-carbide slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1353-1362 (in Chinese). [14] BILODEAU A, MALHOTRA V M. High-volume fly ash system: concrete solution for sustainable development[J]. ACI Materials Journal, 2000, 97(1): 41-48. [15] BOUKENDAKDJI O, KENAI S, KADRI E H, et al. Effect of slag on the rheology of fresh self-compacted concrete[J]. Construction and Building Materials, 2009, 23(7): 2593-2598. [16] 王圣贤, 王雪芳, 姜绍飞. 粉煤灰和矿渣对自密实混凝土早龄期抗裂性的影响[J]. 沈阳建筑大学学报(自然科学版), 2022, 38(6): 1104-1113. WANG S X, WANG X F, JIANG S F. Early-age cracking behavior of self-compacting concrete mixed with fly ash and slag[J]. Journal of Shenyang Jianzhu University (Natural Science), 2022, 38(6): 1104-1113 (in Chinese). [17] DINAKAR P, BABU K G, SANTHANAM M. Durability properties of high volume fly ash self compacting concretes[J]. Cement and Concrete Composites, 2008, 30(10): 880-886. [18] 王栋民, 左彦峰, 欧阳世翕. 氯离子在掺不同矿物质掺合料高性能混凝土中的扩散性能[J]. 硅酸盐学报, 2004, 32(7): 858-861. WANG D M, ZUO Y F, OUYANG S X. Chloride ions diffusion properties in high performance concrete with different possolantic materials[J]. Journal of the Chinese Ceramic Society, 2004, 32(7): 858-861 (in Chinese). [19] ALYAMAÇ K E, INCE R. A preliminary concrete mix design for SCC with marble powders[J]. Construction and Building Materials, 2009, 23(3): 1201-1210. [20] 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. Editorial Department of China Journal of Highway and Transport. Review on China's pavement engineering research · 2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66 (in Chinese). [21] 陈显清. 掺大理石粉的混凝土流变及力学性能试验研究[D]. 广州: 广东工业大学, 2020. CHEN X Q. Experimental study on rheological and mechanical properties of concrete mixed with marble powder[D]. Guangzhou: Guangdong University of Technology, 2020 (in Chinese). [22] 苏雪峰, 张亚慧. 火灾高温对大理石混凝土宏观性能与微观结构的影响[J]. 硅酸盐通报, 2019, 38(12): 3916-3921. SU X F, ZHANG Y H. Effect of fire high temperature on macroscopic properties and microstructure of concrete containing marble[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3916-3921 (in Chinese). [23] TOPÇU İ B, BILIR T, UYGUNOĞLU T. Effect of waste marble dust content as filler on properties of self-compacting concrete[J]. Construction and Building Materials, 2009, 23(5): 1947-1953. [24] 李 燕, 杨旭光, 马 悦, 等. 煤矸石-矿渣-水泥体系的水化进程及其性能研究[J]. 硅酸盐通报, 2016, 35(9): 2729-2732+2740. LI Y, YANG X G, MA Y, et al. Hydration degree and property of coal gangue-slag-cement system[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9): 2729-2732+2740 (in Chinese). [25] 郭金敏. 煤矸石混凝土耐久性的试验研究[J]. 混凝土, 2011(7): 56-58. GUO J M. Experimental research on durabilities of coal gangue concrete[J]. Concrete, 2011(7): 56-58 (in Chinese). [26] 牛晓燕, 王 海, 安明磊, 等. 煤矸石粗骨料对混凝土力学性能的影响[J]. 混凝土, 2023(1): 68-72. NIU X Y, WANG H, AN M L, et al. Study on physical and chemical properties and mechanical properties of gangue coarse aggregate[J]. Concrete, 2023(1): 68-72 (in Chinese). [27] 张吉松. 低水泥用量超高性能混凝土性能和可持续结构设计研究[D]. 大连: 大连海事大学, 2018. ZHANG J S. Study on performance and sustainable structure design of ultra-high performance concrete with low cement content[D]. Dalian: Dalian Maritime University, 2018 (in Chinese). [28] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development, People's Republic of China. General concrete mix design code: JGJ 55—2011[S]. Beijing: China Building and Construction Press, 2011 (in Chinese). [29] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development, State Administration for Market Regulation, PRC. Test method standard for physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Architecture and Construction Press, 2019 (in Chinese). [30] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development, People's Republic of China. Standard of test method for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Construction Press, 2009 (in Chinese). [31] SUN W, YAN H D, ZHAN B G. Analysis of mechanism on water-reducing effect of fine ground slag, high-calcium fly ash, and low-calcium fly ash[J]. Cement and Concrete Research, 2003, 33(8): 1119-1125. [32] ASTM—C1202. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration: ASTM—C1202[S]. Annual Book of ASTM Standards, 1994. [33] ZHENG X, LIU K X, GAO S, et al. Effect of pozzolanic reaction of zeolite on its internal curing performance in cement-based materials[J]. Journal of Building Engineering, 2023, 63: 105503. [34] ETLI S. Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate[J]. Journal of Cleaner Production, 2023, 384: 135590. [35] 刘 沛, 姚素玲, 董宪姝, 等. 矿物掺合料透水混凝土微观结构及性能分析[J]. 硅酸盐通报, 2023, 42(7): 2504-2512. LIU P, YAO S L, DONG X Z, et al. Microstructure and performance analysis of previous concrete with mineral admixtures[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2504-2512 (in Chinese). [36] LAWRENCE P, CYR M, RINGOT E. Mineral admixtures in mortars effect of type, amount and fineness of fine constituents on compressive strength[J]. Cement and Concrete Research, 2005, 35(6): 1092-1105. [37] KONG L J, XIE S H, WANG C H, et al. Effect of iron tailings as fine aggregate and mineral admixture on strength and microstructure of cement mortar[J].International Journal of Concrete Structures and Materials, 2023, 17(1): 1-16. [38] 孙 燕. 大理石废粉地聚物胶凝材料制备及其混凝土力学性能研究[D]. 银川: 宁夏大学, 2022. SUN Y. Preparation of geopolymer cementitious material from waste marble powder and its mechanical properties of concrete[D]. Yinchuan: Ningxia University, 2022 (in Chinese). [39] HAN S H, KIM J K. Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete[J]. Cement and Concrete Research, 2004, 34(7): 1219-1227. |