欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (11): 3914-3926.

所属专题: 水泥混凝土

• 水泥混凝土 • 上一篇    下一篇

基于Stacking模型融合的高性能混凝土强度预测方法

胡以婵, 梁铭, 谢灿荣, 解威威, 翁贻令, 池浩, 彭浩, 罗雪霜   

  1. 广西路桥工程集团有限公司,南宁 530011
  • 收稿日期:2023-06-09 修订日期:2023-08-19 出版日期:2023-11-15 发布日期:2023-11-22
  • 通信作者: 解威威,博士,高级工程师。E-mail:ww.xie@foxmail.com
  • 作者简介:胡以婵(1992—),女,工程师。主要从事人工智能算法对混凝土性能预测与配合比优化等的研究。E-mail:310233130@qq.com
  • 基金资助:
    广西重点研发计划项目(桂科AB22080052);中央引导地方科技发展资金项目(20221229);交通运输行业重点科技项目(2121MSI026)

Strength Prediction Method of High Performance Concrete Based on Stacking Model Fusion

HU Yichan, LIANG Ming, XIE Canrong, XIE Weiwei, WENG Yiling, CHI Hao, PENG Hao, LUO Xueshuang   

  1. Guangxi Road and Bridge Engineering Group Co., Ltd., Nanning 530011, China
  • Received:2023-06-09 Revised:2023-08-19 Online:2023-11-15 Published:2023-11-22

摘要: 针对传统经验公式对高性能混凝土强度预测时存在偏差大、效率低等问题,本文提出一种基于Stacking模型融合的高性能混凝土强度预测方法。首先,通过数据清洗和归一化对1 030组高性能混凝土抗压强度试验数据进行预处理,剔除异常数据及消除数据间量纲影响;其次,基于极端梯度提算法(XGBoost)、类别优先梯度提升算法、多层感知器和随机森林(RF)4种算法开展超参数优化、模型训练和评估,采用决定系数、均方根误差和平均绝对误差对比分析4种基学习器对强度预测的整体效果,在此基础上构建基于Stacking集成学习融合多种机器学习算法的高性能混凝土强度预测模型;最后,采用103组新的高性能数据集对模型进行验证,并开展可解释分析。结果表明:与其他基学习器的组合相比,XGBoost和RF融合模型的预测精度和性能均明显提高,泛化性能较好,且可解释分析显示最重要的输入特征变量是龄期和水泥,说明模型内在的预测逻辑与工程实践的经验较吻合,具有较高的合理性与可靠度。研究结果为进一步提高高性能混凝土强度的预测精度提供参考。

关键词: 混凝土, 强度预测模型, 集成学习, stacking算法, XGBoost算法, RF算法

Abstract: Strength prediction method of high performance concrete based on stacking model fusion was proposed to address the issues of large deviations and low efficiency of traditional empirical formulas for high-performance concrete strength prediction. Firstly, 1 030 sets of high-performance concrete compressive strength test data were preprocessed through data cleaning and normalization to eliminate abnormal data and the dimensional influence among data. Secondly, based on extreme gradient boosting (XGBoost), category boosting, multi-layer perceptron, and random forest (RF) algorithms, hyperparameter optimization, model training and evaluation were conducted, and the overall effect of the four base learners on strength prediction were compared and analyzed using coefficient of determination R2, root mean square error and mean absolute error. Based on this, a Stacking ensemble learning model was constructed, which fuses multiple machine learning algorithms for concrete strength prediction. Finally, the model was validated using 103 sets of new data, and interpretable analysis was performed. The results show that compared to other combinations of base learners, the fusion model using XGBoost and RF significantly improves prediction accuracy and performance, and has good generalization performance. The interpretable analysis shows that the most important input feature variables are age and cement, indicating that the internal prediction logic of the model is more in line with engineering practice experience, having high rationality and reliability. The research results provide reference for further improving the accuracy of high-performance concrete strength prediction.

Key words: concrete, strength prediction model, ensemble learning, stacking algorithm, XGBoost algorithm, RF algorithm

中图分类号: