[1] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3): 262-270. WU Z W. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, 7(3): 262-270 (in Chinese). [2] 李宗津, 孙 伟, 潘金龙. 现代混凝土的研究进展[J]. 中国材料进展, 2009, 28(11): 1-7+53. LI Z J, SUN W, PAN J L. New development of contemporary concrete[J]. Materials China, 2009, 28(11): 1-7+53 (in Chinese). [3] 俞桂良. 高强混凝土强度预测人工智能方法及应用[J]. 混凝土, 2010(10): 41-43. YU G L. Strength prediction of high strength concrete using artificial intelligence method and its application[J]. Concrete, 2010(10): 41-43 (in Chinese). [4] 季 韬, 林挺伟, 林旭健. 基于人工神经网络的混凝土抗压强度预测方法[J]. 建筑材料学报, 2005, 8(6): 677-681. JI T, LIN T W, LIN X J. Prediction method of concrete compressive strength based on artificial neural network[J]. Journal of Building Materials, 2005, 8(6): 677-681 (in Chinese). [5] 唐明述. 水泥混凝土与可持续发展[J]. 中国有色金属学报, 2004, 14(增刊1): 164-172. TANG M S. Cement, concrete and sustainable development[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(supplement 1): 164-172 (in Chinese). [6] LI Z Z, YOON J, ZHANG R, et al. Machine learning in concrete science: applications, challenges, and best practices[J]. NPJ Computational Materials, 2022, 8: 127. [7] CHOU J S, TSAI C F, PHAM A D, et al. Machine learning in concrete strength simulations: multi-nation data analytics[J]. Construction and Building Materials, 2014, 73: 771-780. [8] NUNEZ I, MARANI A, FLAH M, et al. Estimating compressive strength of modern concrete mixtures using computational intelligence: a systematic review[J]. Construction and Building Materials, 2021, 310: 125279. [9] MOHTASHAM M M, SARADAR A, RAHMATI K, et al. Predictive models for concrete properties using machine learning and deep learning approaches: a review[J]. Journal of Building Engineering, 2023, 63: 105444. [10] KHAMBRA G, SHUKLA P. Novel machine learning applications on fly ash based concrete: an overview[J]. Materials Today: Proceedings, 2023, 80: 3411-3417. [11] BEN C W, FLAH M, NEHDI M L. Machine learning prediction of mechanical properties of concrete: critical review[J]. Construction and Building Materials, 2020, 260: 119889. [12] YUAN X Z, TIAN Y Z, AHMAD W, et al. Machine learning prediction models to evaluate the strength of recycled aggregate concrete[J]. Materials, 2022, 15(8): 2823. [13] SHANG M J, LI H J, AHMAD A, et al. Predicting the mechanical properties of RCA-based concrete using supervised machine learning algorithms[J]. Materials, 2022, 15(2): 647. [14] IFTIKHAR B, ALIH S C, VAFAEI M, et al. Predictive modeling of compressive strength of sustainable rice husk ash concrete: ensemble learner optimization and comparison[J]. Journal of Cleaner Production, 2022, 348: 131285. [15] FENG D C, LIU Z T, WANG X D, et al. Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach[J]. Construction and Building Materials, 2020, 230: 117000. [16] ASTERIS P G, SKENTOU A D, BARDHAN A, et al. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models[J]. Cement and Concrete Research, 2021, 145: 106449. [17] FAROOQ F, AHMED W, AKBAR A, et al. Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners[J]. Journal of Cleaner Production, 2021, 292: 126032. [18] KANG M C, YOO D Y, GUPTA R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete[J]. Construction and Building Materials, 2021, 266: 121117. [19] 马 高, 刘 康. 基于BP神经网络CFRP约束混凝土抗压强度预测[J]. 湖南大学学报(自然科学版), 2021, 48(9): 88-97. MA G, LIU K. Prediction of compressive strength of CFRP-confined concrete columns based on BP neural network[J]. Journal of Hunan University (Natural Sciences), 2021, 48(9): 88-97 (in Chinese). [20] NGUYEN K T, NGUYEN Q D, LE T A, et al. Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches[J]. Construction and Building Materials, 2020, 247: 118581. [21] 韩建军, 赵道松, 李建平. 基于BP神经网络的垃圾飞灰混凝土抗压强度预测模型[J]. 混凝土, 2022(9): 78-81. HAN J J, ZHAO D S, LI J P. Prediction model of compressive strength of garbage fly ash concrete based on BP neural network[J]. Concrete, 2022(9): 78-81 (in Chinese). [22] 徐潇航, 胡张莉, 刘加平, 等. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 45-53. XU X H, HU Z L, LIU J P, et al. Concrete strength prediction of the Three Gorges Dam based on machine learning regression model[J]. Materials Reports, 2023, 37(2): 45-53 (in Chinese). [23] 梁宁慧, 游秀菲, 曹郭俊, 等. 基于机器学习的高温后聚丙烯纤维混凝土强度预测[J]. 硅酸盐通报, 2021, 40(2): 455-464. LIANG N H, YOU X F, CAO G J, et al. Strength prediction of mechanical properties of polypropylene fiber reinforced concrete after high temperature based on machine learning[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 455-464 (in Chinese). [24] 韩 斌, 吉 坤, 胡亚飞, 等. ANN-PSO-GA模型在湿喷混凝土强度预测及配合比优化中的应用[J]. 采矿与安全工程学报, 2021, 38(3): 584-591. HAN B, JI K, HU Y F, et al. Application of ANN-PSO-GA model in UCS prediction and mix proportion optimization of wet shotcrete[J]. Journal of Mining & Safety Engineering, 2021, 38(3): 584-591 (in Chinese). [25] 汪声瑞, 胡 畔, 陈思宝, 等. 基于耦合BAS-MLP混凝土抗压强度的预测[J/OL]. 建筑材料学报: 1-15 [2023-04-03]. http://kns.cnki.net/kcms/detail/31.1764.TU.20230308.1421.004.html. WANG S R, HU P, CHEN S B, et al. Prediction of concrete compressive strength based on coupled BAS-MLP[J/OL]. Journal of Building Materials: 1-15 [2023-04-03]. http://kns.cnki.net/kcms/detail/31.1764.TU.20230308.1421.004.html (in Chinese). [26] 李 杨, 刘庆华, 郭天添. 基于CART-SVR模型的混凝土抗压强度预测研究[J]. 混凝土, 2022(8): 40-44. LI Y, LIU Q H, GUO T T. Prediction method of concrete compressive strength based on CART-SVR[J]. Concrete, 2022(8): 40-44 (in Chinese). [27] 吴中伟. 绿色高性能混凝土与科技创新[J]. 建筑材料学报, 1998, 1(1): 1-7. WU Z W. Green high performance concrete and innovation[J]. Journal of Building Materials, 1998, 1(1): 1-7 (in Chinese). [28] 马 骏. 高速公路预制T梁用高性能混凝土性能研究[J]. 中国测试, 2021, 47(6): 124-130. MA J. Research on properties of high performance concrete for precast T-beam of expressway[J]. China Measurement & Test, 2021, 47(6): 124-130 (in Chinese). [29] 秦 涛, 韩方玉, 光鉴淼, 等. 铁路桥梁用高性能混凝土的力学性能试验研究[J]. 混凝土, 2021(3): 134-136. QIN T, HAN F Y, GUANG J M, et al. Experimental study on mechanical properties of high performance concrete for railway bridges[J]. Concrete, 2021(3): 134-136 (in Chinese). [30] 武春丽. 两部门联合推广应用高性能混凝土鼓励绿色建筑、保障房、政府投资工程率先应用[J]. 混凝土, 2014(4): 151. WU C L.The two departments jointly promote the application of high-performance concrete and encourage green buildings, affordable housing and government investment projects to take the lead[J]. Concrete, 2014(4): 151 (in Chinese). [31] 胥 悦. 高性能混凝土技术在工业建筑工程中的实际应用[J]. 工业建筑, 2021, 51(8): 256. XU Y. Practical application of high performance concrete technology in industrial construction engineering[J]. Industrial Construction, 2021, 51(8): 256 (in Chinese). [32] 谷坤鹏, 王成启. 海工高性能混凝土常用胶凝材料抗硫酸盐侵蚀性能研究[J]. 水运工程, 2010(12): 8-13. GU K P, WANG C Q. Resistance to sulfate corrosion of commonly used cement pastes of high-performance concrete for marine engineering[J]. Port & Waterway Engineering, 2010(12): 8-13 (in Chinese). [33] 王跃全, 薛文强. 洋山港口工程中高性能混凝土施工质量控制[J]. 水运工程, 2005(6): 91-95. WANG Y Q, XUE W Q. Quality control of high-performance concrete coustruction in Yangshan Port engineering[J]. Port & Waterway Engineering, 2005(6): 91-95 (in Chinese). [34] WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. [35] CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22 nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA. New York: ACM, 2016: 785-794. [36] PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[EB/OL]. 2017: arXiv: 1706.09516. https://arxiv.org/abs/1706.09516. [37] BREIMAN L. Random forests[J]. Machine Language, 2001, 45(1): 5-32. [38] WIDIASARI I R, NUGROHO L E, WIDYAWAN. Deep learning multilayer perceptron (MLP) for flood prediction model using wireless sensor network based hydrology time series data mining[C]//2017 International Conference on Innovative and Creative Information Technology (ICITech). Salatiga, Indonesia. IEEE, 2017: 1-5. [39] LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA. New York: ACM, 2017: 4768-4777. [40] YEH I C. Modeling of strength of high-performance concrete using artificial neural networks[J]. Cement and Concrete Research, 1998, 28(12): 1797-1808. [41] YEH I C. Modeling slump flow of concrete using second-order regressions and artificial neural networks[J]. Cement and Concrete Composites, 2007, 29(6): 474-480. |