硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (10): 3579-3593.
贺敏1,2,3, 仰宗宝1,2, 李兆超1,2, 欧志华1,2, 欧蔓丽1,2, Tony Yang3
收稿日期:
2023-06-07
修订日期:
2023-08-04
出版日期:
2023-10-15
发布日期:
2023-10-17
通信作者:
李兆超,博士,教授。E-mail:lizhaochao@hut.edu.cn;欧志华,博士,教授。E-mail:ouzhihua@hut.edu.cn
作者简介:
贺 敏(1988—),女,博士,讲师。主要从事无机聚合物材料方面的研究。E-mail:hemin@hut.edu.cn
基金资助:
HE Min1,2,3, YANG Zongbao1,2, LI Zhaochao1,2, OU Zhihua1,2, OU Manli1,2, YANG Tony3
Received:
2023-06-07
Revised:
2023-08-04
Online:
2023-10-15
Published:
2023-10-17
摘要: 酸激发地质聚合物(ASP-GP)是由铝硅酸盐与酸性溶液反应生成的具有三维立体网络结构的铝硅酸盐无机聚合物。它具有制备工艺简单、机械强度高(最大抗压强度达146 MPa)、耐火耐高温性能好、固封性能及介电性能优异等优点,可作为传统建筑材料、隔热耐火耐高温材料、固封材料、电子封装材料等。此外,低碳节能的制造过程恰好满足绿色环保和节能减排需求,因此,ASP-GP在土木工程、机械工程、航空航天、冶金、核废固封等领域均具有广阔的应用前景。本文依据国内外现有的ASP-GP研究成果,综述了ASP-GP反应机理及力学性能的研究进展,总结了影响ASP-GP力学性能的因素,包括铝硅酸盐活性、激发剂、原材料配合比、养护制度等,以期为ASP-GP的后续研究提供一定的指导。
中图分类号:
贺敏, 仰宗宝, 李兆超, 欧志华, 欧蔓丽, Tony Yang. 酸激发地质聚合物反应机理与力学性能研究进展[J]. 硅酸盐通报, 2023, 42(10): 3579-3593.
HE Min, YANG Zongbao, LI Zhaochao, OU Zhihua, OU Manli, YANG Tony. Research Progress on Reaction Mechanism and Mechanical Properties of Aluminosilicate Phosphate Geopolymers[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(10): 3579-3593.
[1] 陶文宏, 付兴华, 孙凤金, 等. 地聚物胶凝材料性能与聚合机理的研究[J]. 硅酸盐通报, 2008, 27(4): 730-735+739. TAO W H, FU X H, SUN F J, et al. Studies on properties and mechanisms of geopolymer cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(4): 730-735+739 (in Chinese). [2] 周 显, 胡 波, 童 军, 等. 赤泥基土壤聚合物固化重金属的机理研究[J]. 岩土工程学报, 2020, 42(增刊1): 239-243. ZHOU X, HU B, TONG J, et al. Mechanism of heavy metal stabilization by red mud-based geopolymer[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(supplement 1): 239-243 (in Chinese). [3] 卢 灿. 磷酸盐矿物键合材料的制备及其机理研究[D]. 深圳: 深圳大学, 2016: 1-2. LU C. Preparation and mechanism of phosphate minerals bonding materials[D]. Shenzhen: Shenzhen University, 2016: 1-2 (in Chinese). [4] DAVIDOVITS J. Synthesis of new high-temperature geo-polymers for reinforced plastic/composites[C]. PACTEC 79 Society of Plastics Engineers, 1979: 151-154. [5] ZHAO J H, TONG L Y, LI B E, et al. Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment[J]. Journal of Cleaner Production, 2021, 307: 127085. [6] MAJDOUBI H, MAKHLOUF R, HADDAJI Y, et al. Valorization of phosphogypsum waste through acid geopolymer technology: synthesis, characterization, and environmental assessment[J]. Construction and Building Materials, 2023, 371: 130710. [7] MARSH A, HEATH A, PATUREAU P, et al. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals[J]. Applied Clay Science, 2018, 166: 250-261. [8] SEDMALE G, RANDERS M, RUNDANS M, et al. Application of differently treated illite and illite clay samples for the development of ceramics[J]. Applied Clay Science, 2017, 146: 397-403. [9] BERNASCONI D, VIANI A, ZÁRYBNICKÁ L, et al. Phosphate-based geopolymer: influence of municipal solid waste fly ash introduction on structure and compressive strength[J]. Ceramics International, 2023, 49(13): 22149-22159. [10] SASUI S S, KIM G, NAM J, et al. Strength and microstructure of class-C fly ash and GGBS blend geopolymer activated in NaOH&NaOH+Na2SiO3[J]. Materials, 2019, 13(1): 59. [11] DJOBO J, STEPHAN D, ELIMBI A. Setting and hardening behavior of volcanic ash phosphate cement[J]. Journal of Building Engineering, 2020, 31: 101427. [12] KUMAR P K, SRINIVASU K. Influence of GGBS and concentration of sodium hydroxide on strength behavior of geopolymer mortar[J]. Materials Today: Proceedings, 2022, 65: 702-706. [13] ZULKIFLY K, HEAH C Y, LIEW Y M, et al. Effect of phosphate addition on room-temperature-cured fly ash-metakaolin blend geopolymers[J]. Construction and Building Materials, 2021, 270: 121486. [14] WANG Y S, ALREFAEI Y, DAI J G. Influence of coal fly ash on the early performance enhancement and formation mechanisms of silico-aluminophosphate geopolymer[J]. Cement and Concrete Research, 2020, 127: 105932. [15] MA S, ZHANG Z, LIU X. Comprehensive understanding of aluminosilicate phosphate geopolymers: a critical review[J]. Materials, 2022, 15(17): 5961. [16] DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [17] KHALE D, CHAUDHARY R. Mechanism of geopolymerization and factors influencing its development: a review[J]. Journal of Materials Science, 2007, 42(3): 729-746. [18] YAO X, ZHANG Z H, ZHU H J, et al. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry[J]. Thermochimica Acta, 2009, 493(1/2): 49-54. [19] MUÑIZ-VILLARREAL M S, MANZANO-RAMÍREZ A, SAMPIERI-BULBARELA S, et al. The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer[J]. Materials Letters, 2011, 65(6): 995-998. [20] KUMAR A, KUMAR S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization[J]. Construction and Building Materials, 2013, 38: 865-871. [21] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [22] NATH S K, MUKHERJEE S, MAITRA S, et al. Ambient and elevated temperature geopolymerization behaviour of class F fly ash[J]. Transactions of the Indian Ceramic Society, 2014, 73(2): 126-132. [23] BAJPAI R, CHOUDHARY K, SRIVASTAVA A, et al. Environmental impact assessment of fly ash and silica fume based geopolymer concrete[J]. Journal of Cleaner Production, 2020, 254: 120147. [24] GAO L, ZHENG Y X, TANG Y, et al. Effect of phosphoric acid content on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers[J]. Heliyon, 2020, 6(4): e03853. [25] KHABBOUCHI M, HOSNI K, MEZNI M, et al. Interaction of metakaolin-phosphoric acid and their structural evolution at high temperature[J]. Applied Clay Science, 2017, 146: 510-516. [26] RAVEN K P, LOEPPERT R H. Microwave digestion of fertilizers and soil amendments[J]. Communications in Soil Science and Plant Analysis, 1996, 27(18/19/20): 2947-2971. [27] BARTOS J M, MULLINS G L, SIKORA F J, et al. Availability of phosphorus in the water-insoluble fraction of monoammonium phosphate fertilizers[J]. Soil Science Society of America Journal, 1991, 55(2): 539-543. [28] WAGH A S. Chemically bonded phosphate ceramics-a novel class of geopolymers[C]//Advances in Ceramic Matrix Composites X: Proceedings of the 106th Annual Meeting of the American Ceramic Society. Indiana: Ceramic Transactions, 2004: 107. [29] PU S Y, ZHU Z D, SONG W L, et al. Mechanical and microscopic properties of fly ash phosphoric acid-based geopolymer paste: a comprehensive study[J]. Construction and Building Materials, 2021, 299: 123947. [30] DJOBO J N Y, NKWAJU R Y. Preparation of acid aluminum phosphate solutions for metakaolin phosphate geopolymer binder[J]. RSC Advances, 2021, 11(51): 32258-32268. [31] GUO C M, WANG K T, LIU M Y, et al. Preparation and characterization of acid-based geopolymer using metakaolin and disused polishing liquid[J]. Ceramics International, 2016, 42(7): 9287-9291. [32] 曹德光, 苏达根, 路 波, 等. 偏高岭石-磷酸基矿物键合材料的制备与结构特征[J]. 硅酸盐学报, 2005, 33(11)1385-1389. CAO D G, SU D G, LU B, et al. Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid[J]. Journal of the Chinese Ceramic Society, 2005, 33(11): 1385-1389 (in Chinese). [33] 刘乐平. 磷酸基地质聚合物的反应机理与应用研究[D]. 南宁: 广西大学, 2012: 24-73. LIU L P. Study on reaction mechanism and application of phosphate-based polymers[D]. Nanning: Guangxi University, 2012: 24-73 (in Chinese). [34] 何 流, 马 雪, 李良锋, 等. Al2O3·nSiO2-mH3PO4磷酸基地质聚合物的制备与结构表征[J]. 人工晶体学报, 2018, 47(12): 2527-2533. HE L, MA X, LI L F, et al. Preparation and structural characterization of Al2O3·nSiO2-mH3PO4 phosphoric acid-based geopolymer[J]. Journal of Synthetic Crystals, 2018, 47(12): 2527-2533 (in Chinese). [35] LOUATI S, BAKLOUTI S, SAMET B. Acid based geopolymerization kinetics: effect of clay particle size[J]. Applied Clay Science, 2016, 132/133: 571-578. [36] ZRIBI M, BAKLOUTI S. Investigation of phosphate based geopolymers formation mechanism[J]. Journal of Non-Crystalline Solids, 2021, 562: 120777. [37] TCHAKOUTÉ H K, RÜSCHER C H, KAMSEU E, et al. The influence of gibbsite in kaolin and the formation of berlinite on the properties of metakaolin-phosphate-based geopolymer cements[J]. Materials Chemistry and Physics, 2017, 199: 280-288. [38] TCHAKOUTÉ H K, RÜSCHER C H. Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: a comparative study[J]. Applied Clay Science, 2017, 140: 81-87. [39] DOUIRI H, LOUATI S, BAKLOUTI S, et al. Structural, thermal and dielectric properties of phosphoric acid-based geopolymers with different amounts of H3PO4[J]. Materials Letters, 2014, 116: 9-12. [40] TCHAKOUTÉ H K, RÜSCHER C H, KAMSEU E, et al. Influence of the molar concentration of phosphoric acid solution on the properties of metakaolin-phosphate-based geopolymer cements[J]. Applied Clay Science, 2017, 147: 184-194. [41] MORSY M S, RASHAD A M, SHOUKRY H, et al. Potential use of limestone in metakaolin-based geopolymer activated with H3PO4 for thermal insulation[J]. Construction and Building Materials, 2019, 229: 117088. [42] LOUATI S, BAKLOUTI S, SAMET B. Geopolymers based on phosphoric acid and illito-kaolinitic clay[J]. Advances in Materials Science and Engineering, 2016, 2016: 1-7. [43] MATHIVET V, JOUIN J, GHARZOUNI A, et al. Acid-based geopolymers: understanding of the structural evolutions during consolidation and after thermal treatments[J]. Journal of Non-Crystalline Solids, 2019, 512: 90-97. [44] WANG Y S, DAI J G, DING Z, et al. Phosphate-based geopolymer: formation mechanism and thermal stability[J]. Materials Letters, 2017, 190: 209-212. [45] PERERA D S, HANNA J V, DAVIS J, et al. Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials[J]. Journal of Materials Science, 2008, 43(19): 6562-6566. [46] LIN H, LIU H, LI Y, et al. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures[J]. Cement and Concrete Research, 2021, 144: 106425. [47] DONG T, XIE S B, WANG J S, et al. Properties and characterization of a metakaolin phosphate acid-based geopolymer synthesized in a humid environment[J]. Journal of the Australian Ceramic Society, 2020, 56(1): 175-184. [48] CELERIER H, JOUIN J, TESSIER-DOYEN N, et al. Influence of various metakaolin raw materials on the water and fire resistance of geopolymers prepared in phosphoric acid[J]. Journal of Non-Crystalline Solids, 2018, 500: 493-501. [49] GUO H Z, YUAN P, ZHANG B F, et al. Realization of high-percentage addition of fly ash in the materials for the preparation of geopolymer derived from acid-activated metakaolin[J]. Journal of Cleaner Production, 2021, 285: 125430. [50] KATSIKI A, HERTEL T, TYSMANS T, et al. Metakaolinite phosphate cementitious matrix: inorganic polymer obtained by acidic activation[J]. Materials, 2019, 12(3): 442. [51] 何 流. 磷酸基地质聚合物的结构演变及固化模拟核素研究[D]. 绵阳: 西南科技大学, 2019: 17-21. HE L. Study on structural evolution and curing simulated nuclides of phosphate-based polymers[D]. Mianyang: Southwest University of Science and Technology, 2019: 17-21 (in Chinese). [52] WANG Y S, PROVIS J L, DAI J G. Role of soluble aluminum species in the activating solution for synthesis of silico-aluminophosphate geopolymers[J]. Cement and Concrete Composites, 2018, 93: 186-195. [53] ZRIBI M, SAMET B, BAKLOUTI S. Effect of curing temperature on the synthesis, structure and mechanical properties of phosphate-based geopolymers[J]. Journal of Non-Crystalline Solids, 2019, 511: 62-67. [54] BEWA C N, TCHAKOUTÉ H K, BANENZOUÉ C, et al. Acid-based geopolymers using waste fired brick and different metakaolins as raw materials[J]. Applied Clay Science, 2020, 198: 105813. [55] ZHANG B F, GUO H Z, DENG L L, et al. Undehydrated kaolinite as materials for the preparation of geopolymer through phosphoric acid-activation[J]. Applied Clay Science, 2020, 199: 105887. [56] HE Y, LIU L P, HE L P, et al. Characterization of chemosynthetic H3PO4-Al2O3-2SiO2 geopolymers[J]. Ceramics International, 2016, 42(9): 10908-10912. [57] BEWA C N, TCHAKOUTÉ H K, RÜSCHER C H, et al. Influence of the curing temperature on the properties of poly(phospho-ferro-siloxo) networks from laterite[J]. SN Applied Sciences, 2019, 1(8): 1-12. [58] POUGNONG T E, BELIBI P D B, BAENLA J, et al. Effects of chemical composition of amorphous phase on the reactivity of phosphoric acid activation of volcanic ashes[J]. Journal of Non-Crystalline Solids, 2022, 575: 121213. [59] MAHYAR M, ERDOĞAN S T. Phosphate-activated high-calcium fly ash acid-base cements[J]. Cement and Concrete Composites, 2015, 63: 96-103. [60] HE M, YANG Z B, LI N, et al. Strength, microstructure, CO2 emission and economic analyses of low concentration phosphoric acid-activated fly ash geopolymer[J]. Construction and Building Materials, 2023, 374: 130920. [61] PU S Y, ZHU Z D, SONG W L, et al. A eco-friendly acid fly ash geopolymer with a higher strength[J]. Construction and Building Materials, 2022, 335: 127450. [62] WANG Y S, ALREFAEI Y, DAI J G. Improvement of early-age properties of silico-aluminophosphate geopolymer using dead burnt magnesia[J]. Construction and Building Materials, 2019, 217: 1-11. [63] CELERIER H, JOUIN J, MATHIVET V, et al. Composition and properties of phosphoric acid-based geopolymers[J]. Journal of Non-Crystalline Solids, 2018, 493: 94-98. [64] ZAHID M, SHAFIQ N, NURUDDIN M F, et al. Effect of partial replacement of fly ash by metakaolin on strength development of fly ash based geopolymer mortar[J]. Key Engineering Materials, 2017, 744: 131-135. [65] ZHANG B F, GUO H Z, YUAN P, et al. Novel acid-based geopolymer synthesized from nanosized tubular halloysite: the role of precalcination temperature and phosphoric acid concentration[J]. Cement and Concrete Composites, 2020, 110: 103601. [66] WANG M R, JIA D C, HE P G, et al. Influence of calcination temperature of kaolin on the structure and properties of final geopolymer[J]. Materials Letters, 2010, 64(22): 2551-2554. [67] DEROUICHE R, BAKLOUTI S. Phosphoric acid based geopolymerization: effect of the mechanochemical and the thermal activation of the kaolin[J]. Ceramics International, 2021, 47(10): 13446-13456. [68] 翁履谦, KWESI S, 宋申华, 等. 地质聚合物合成中铝酸盐组分的作用机制(英文)[J]. 硅酸盐学报, 2005, 33(3): 276-280. WENG L Q, KWESI S, SONG S H, et al. Hydrolysis kinetics of aluminates in geopolymers synthesis[J]. Journal of the Chinese Ceramic Society, 2005, 33(3): 276-280. [69] 郭昌明. 以失效磷酸基抛光液为激发剂制备地质聚合物的研究与应用[D]. 南宁: 广西大学, 2016: 106. GUO C M. Research and application of geopolymer preparation with spent phosphate-based polishing solution as activator[D]. Nanning: Guangxi University, 2016: 106 (in Chinese). [70] MATHIVET V, JOUIN J, PARLIER M, et al. Control of the alumino-silico-phosphate geopolymers properties and structures by the phosphorus concentration[J]. Materials Chemistry and Physics, 2021, 258: 123867. [71] ZRIBI M, SAMET B, BAKLOUTI S. Mechanical, microstructural and structural investigation of phosphate-based geopolymers with respect to P/Al molar ratio[J]. Journal of Solid State Chemistry, 2020, 281: 121025. [72] LOUATI S, HAJJAJI W, BAKLOUTI S, et al. Structure and properties of new eco-material obtained by phosphoric acid attack of natural Tunisian clay[J]. Applied Clay Science, 2014, 101: 60-67. [73] 邢书银. 利用粉煤灰制备地质聚合物的实验研究[D]. 西宁: 青海大学, 2016: 40-47. XING S Y. Experimental study on preparation of geopolymer from fly ash[D]. Xining: Qinghai University, 2016: 40-47 (in Chinese). [74] 董 腾, 邹艺璇, 宋 培, 等. 微波养护偏高岭土磷酸基地聚物的特征与表征[J]. 中国粉体技术, 2020, 26(4): 52-58. DONG T, ZOU Y X, SONG P, et al. Characteristics and characterization of metakaolin phosphoric acid-based geopolymer cured by microwave[J]. China Powder Science and Technology, 2020, 26(4): 52-58 (in Chinese). [75] 佟 钰, 夏 枫, 张 婷, 等. 微波加热对地聚物砂浆力学强度的影响[J]. 沈阳建筑大学学报(自然科学版), 2015, 31(2): 313-319. TONG Y, XIA F, ZHANG T, et al. Influence of microwave heating on mechanical strength of geopolymer-based mortar[J]. Journal of Shenyang Jianzhu University (Natural Science), 2015, 31(2): 313-319 (in Chinese). [76] 姚正珍. 磷酸基地聚合物的制备及耐高温耐腐蚀性能研究[D]. 绵阳: 西南科技大学, 2020: 10-22. YAO Z Z. Preparation of phosphoric acid-based polymer and study on its high temperature resistance and corrosion resistance[D]. Mianyang: Southwest University of Science and Technology, 2020: 10-22 (in Chinese). [77] KAZE C R, LECOMTE-NANA G L, KAMSEU E, et al. Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: a comparative study[J]. Cement and Concrete Research, 2021, 140: 106320. [78] DJOBO J N Y, STEPHAN D. The reaction of calcium during the formation of metakaolin phosphate geopolymer binder[J]. Cement and Concrete Research, 2022, 158: 106840. [79] LI J C, SUN Z G, WANG L, et al. Properties and mechanism of high-magnesium nickel slag-fly ash based geopolymer activated by phosphoric acid[J]. Construction and Building Materials, 2022, 345: 128256. [80] WAGH A S, JEONG S Y. Chemically bonded phosphate ceramics: I, a dissolution model of formation[J]. Journal of the American Ceramic Society, 2003, 86(11): 1838-1844. [81] CHERKI EL IDRISSI A, ROZIERE E, LOUKILI A, et al. Design of geopolymer grouts: the effects of water content and mineral precursor[J]. European Journal of Environmental and Civil Engineering, 2018, 22(5): 628-649. [82] NG Y S, LIEW Y M, HEAH C Y, et al. Improvements of flexural properties and thermal performance in thin geopolymer based on fly ash and ladle furnace slag using borax decahydrates[J]. Materials, 2022, 15(12): 4178. [83] LIU H J, SANJAYAN J G, BU Y H. The application of sodium hydroxide and anhydrous borax as composite activator of class F fly ash for extending setting time[J]. Fuel, 2017, 206: 534-540. [84] NUAKLONG P, JANPRASIT K, JONGVIVATSAKUL P. Enhancement of strengths of high-calcium fly ash geopolymer containing borax with rice husk ash[J]. Journal of Building Engineering, 2021, 40: 102762. [85] 杨 涛. 碳纳米管修饰聚酰亚胺纤维增强磷酸基地质聚合物力学性能和介电性能的研究[D]. 北京: 北京化工大学, 2017: 20-30. YANG T. Study on mechanical properties and dielectric properties of carbon nanotubes modified polyimide fiber reinforced phosphate-based polymers[D]. Beijing: Beijing University of Chemical Technology, 2017: 20-30 (in Chinese). [86] YU C Q, YU Y R, ZHAO Y M, et al. Mechanical properties and in situ fracture behavior of SiO2f/phosphate geopolymer composites[J]. Rare Metals, 2020, 39(5): 562-569. [87] HE P G, JIA L Y, MA G R, et al. Effects of fiber contents on the mechanical and microwave absorbent properties of carbon fiber felt reinforced geopolymer composites[J]. Ceramics International, 2018, 44(9): 10726-10734. [88] DING Z, LU C, CUI P, et al. Primal study on mechanical properties of phosphate based geopolymer[J]. Key Engineering Materials, 2017, 726: 490-494. |
[1] | 郭政, 穆松, 庄智杰, 张浩, 张蕾. 中/高度真空环境下水泥基材料性能的研究进展[J]. 硅酸盐通报, 2023, 42(9): 3075-3082. |
[2] | 邓永刚, 代婷婷, 孙晨, 杨元全. 沸石微粉对磷酸钾镁水泥水化性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3083-3088. |
[3] | 陈友治, 吴修齐, 殷伟淞, 李万民, 汤世昌. 电石渣对复合胶凝材料力学性能和微观结构的影响[J]. 硅酸盐通报, 2023, 42(9): 3196-3203. |
[4] | 李学亮, 赵庆朝, 李伟光, 李勇, 朱阳戈, 宋厚彬, 杨浩, 张艳平. 煤系偏高岭土对混凝土力学性能及微观结构的影响机理[J]. 硅酸盐通报, 2023, 42(9): 3221-3230. |
[5] | 郭志翔, 王琴, 张秋臣, 郑海宇, 刘克俊. 氟化物对石膏基胶凝材料结构和性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3248-3257. |
[6] | 杨医博, 梁宋梭, 刘福财, 谢锐, 欧锦盛, 郭文瑛, 王恒昌. 低吸水率陶瓷再生砂对砂浆力学和干燥收缩性能的影响及机理研究[J]. 硅酸盐通报, 2023, 42(9): 3277-3285. |
[7] | 彭蔓, 高涌涛, 韩杨, 陈秀丽, 寇雄俊. 废旧钢纤维增强橡胶混凝土力学性能试验研究[J]. 硅酸盐通报, 2023, 42(9): 3286-3294. |
[8] | 袁志勇, 张学日, 李凯, 许承铭, 吴佳莉, 廖仓冬, 郑猛, 吴英豪, 阎法强. 高铝瓷组成、结构与力学性能随烧成温度的演变[J]. 硅酸盐通报, 2023, 42(9): 3315-3323. |
[9] | 宋子贤, 温建华. 3MTM实心陶瓷微球在瓷器补配中的性能研究[J]. 硅酸盐通报, 2023, 42(9): 3342-3349. |
[10] | 李晓东, 滕逸伟, 赵建宁, 闫升, 杨建荣, 贾小龙. 大掺量煤气化炉渣稳定基层混合料的制备及路用性能研究[J]. 硅酸盐通报, 2023, 42(9): 3412-3420. |
[11] | 褚洪岩, 安圆圆, 秦健健, 蒋金洋. 轻质高性能混凝土力学性能及微观结构研究[J]. 硅酸盐通报, 2023, 42(8): 2722-2732. |
[12] | 周丽波, 陈平, 胡成, 荣北国, 张健, 梁翔, 夏海洋, 梁志锋. 钢渣-赤泥-水泥基复合砂浆的水化硬化特性[J]. 硅酸盐通报, 2023, 42(8): 2837-2845. |
[13] | 王成刚, 刘耀伟, 王帅, 马兵辉, 毕功华. 钢渣双掺混凝土力学与耐久性能试验研究[J]. 硅酸盐通报, 2023, 42(8): 2846-2855. |
[14] | 孙楚函, 王洪磊, 周新贵. 前驱体转化法制备超高温陶瓷粉体研究进展[J]. 硅酸盐通报, 2023, 42(8): 2865-2880. |
[15] | 王嘉毅, 汪涛, 聂云鹏, 王琪. IP6-HA改性磷酸镁基复合骨水泥的制备与性能研究[J]. 硅酸盐通报, 2023, 42(8): 2888-2894. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||