硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (10): 3421-3431.
• 水泥混凝土 • 下一篇
李曈1, 任庆新2, 王庆贺1
收稿日期:
2023-06-07
修订日期:
2023-07-25
出版日期:
2023-10-15
发布日期:
2023-10-17
通信作者:
任庆新,博士,教授。E-mail:renqingxin@fosu.edu.cn
作者简介:
李 曈(1994—),男,博士研究生。主要从事高性能混凝土的研究。E-mail:940423472@qq.com
基金资助:
LI Tong1, REN Qingxin2, WANG Qinghe1
Received:
2023-06-07
Revised:
2023-07-25
Online:
2023-10-15
Published:
2023-10-17
摘要: 基于微观力学理论设计的工程水泥基复合材料(ECC)具有应变硬化行为和多重开裂特性,其极限拉伸应变是纤维增强混凝土的500倍,具有优异的裂缝控制能力,可显著提高混凝土结构的力学性能和耐久性能。然而,有限的原材料产地和高昂的生产成本限制了ECC的广泛应用。基于此,本文回顾了ECC的相关文献,论述了利用本地原材料甚至是再生废弃材料制备出满足性能要求ECC的可行性,讨论了胶凝材料、骨料和纤维材料对ECC力学性能的影响规律以及作用机理。此外,探讨了ECC的研究方向,以期为日后的研究提供参考。
中图分类号:
李曈, 任庆新, 王庆贺. 经济环保型工程水泥基复合材料力学性能研究进展[J]. 硅酸盐通报, 2023, 42(10): 3421-3431.
LI Tong, REN Qingxin, WANG Qinghe. Research Progress on Mechanical Properties of Economic and Environment-Friendly Engineered Cementitious Composites[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(10): 3421-3431.
[1] 甘 磊, 吴 健, 沈振中, 等. 硫酸盐和干湿循环作用下玄武岩纤维混凝土劣化规律[J]. 土木工程学报, 2021, 54(11): 37-46. GAN L, WU J, SHEN Z Z, et al. Deterioration law of basalt fiber reinforced concrete under sulfate attack and dry-wet cycle[J]. China Civil Engineering Journal, 2021, 54(11): 37-46 (in Chinese). [2] 赵燕茹, 刘芳芳, 王 磊, 等. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069. ZHAO Y R, LIU F F, WANG L, et al. Modeling of the compressive strength of basalt fiber concrete based on pore structure under single-side freeze-thaw condition[J]. Materials Reports, 2020, 34(12): 12064-12069 (in Chinese). [3] 莫金旭, 曾 磊, 郭 帆, 等. 橡胶粉对聚丙烯纤维混凝土力学性能和微观结构的影响[J]. 建筑材料学报, 2020, 23(5): 1222-1229. MO J X, ZENG L, GUO F, et al. Effect of rubber powder on mechanical properties and microstructure of polypropylene fiber reinforced concrete[J]. Journal of Building Materials, 2020, 23(5): 1222-1229 (in Chinese). [4] O’HEGARTY R, KINNANE O, NEWELL J, et al. High performance, low carbon concrete for building cladding applications[J]. Journal of Building Engineering, 2021, 43: 102566. [5] LUHAR S, CHAUDHARY S, LUHAR I. Development of rubberized geopolymer concrete: strength and durability studies[J]. Construction and Building Materials, 2019, 204: 740-753. [6] SHAIKH F U A, LUHAR S, AREL H Ş, et al. Performance evaluation of ultrahigh performance fibre reinforced concrete: a review[J]. Construction and Building Materials, 2020, 232: 117152. [7] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. [8] LI V C. On engineered cementitious composites (ECC): a review of the material and its applications[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 215-230. [9] ŞAHMARAN M, LI V C. Durability of mechanically loaded engineered cementitious composites under highly alkaline environments[J]. Cement and Concrete Composites, 2008, 30(2): 72-81. [10] ŞAHMARAN M, LI V C. Durability properties of micro-cracked ECC containing high volumes fly ash[J]. Cement and Concrete Research, 2009, 39(11): 1033-1043. [11] YILDIRIM G, ALYOUSIF A, ŞAHMARAN M, et al. Assessing the self-healing capability of cementitious composites under increasing sustained loading[J]. Advances in Cement Research, 2015, 27(10): 581-592. [12] AL-DAHAWI A, YILDIRIM G, OZTURK O, et al. Assessment of self-sensing capability of engineered cementitious composites within the elastic and plastic ranges of cyclic flexural loading[J]. Construction and Building Materials, 2017, 145: 1-10. [13] LEPECH M D, LI V C. Water permeability of cracked cementitious composites[C]//Proceedings 11th International Conference on Fracture, 2005: 4539-4541. [14] LI V C. Engineered cementitious composites (ECC): material, structural and durability performance[M]//Concrete Construction Engineering Handbook. Boca Raton: CRC Press, 2007: 24-28. [15] SAHMARAN M, LI V C, ANDRADE C. Corrosion resistance performance of steel-reinforced engineered cementitious composite beams[J]. ACI Materials Journal, 2008, 105(3): 243-250. [16] LIU H Z, ZHANG Q, LI V, et al. Durability study on engineered cementitious composites (ECC) under sulfate and chloride environment[J]. Construction and Building Materials, 2017, 133: 171-181. [17] LI V C, HORIKOSHI T, OGAWA A, S, et al. Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite[J]. ACI Materials Journal, 2004, 101(3): 242-248. [18] HE S, QIU J S, LI J X, et al. Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers[J]. Cement and Concrete Research, 2017, 98: 50-60. [19] ZHANG Z G, YUVARAJ A, DI J, et al. Matrix design of light weight, high strength, high ductility ECC[J]. Construction and Building Materials, 2019, 210: 188-197. [20] LI L Z, CAI Z W, YU K Q, et al. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa[J]. Cement and Concrete Composites, 2019, 97: 202-217. [21] CHOI J I, SONG K I, SONG J K, et al. Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites[J]. Composite Structures, 2016, 138: 116-121. [22] RANADE R, LI V C, STULTS M D, et al. Rushing, composite properties of high-strength, high-ductility concrete[J]. ACI Materials Journal, 2013, 110: 413-422. [23] YU J, LI H D, LEUNG C K Y, et al. Matrix design for waterproof engineered cementitious composites (ECCs)[J]. Construction and Building Materials, 2017, 139: 438-446. [24] XU M F, SONG S, FENG L, et al. Development of basalt fiber engineered cementitious composites and its mechanical properties[J]. Construction and Building Materials, 2021, 266: 121173. [25] WANG S, LI V C. Engineered cementitious composites with high-volume fly ash[J]. ACI Materials Journal, 2007, 104(3): 233-268. [26] YANG E, YANG Y, LI V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J]. ACI Materials Journal, 2007, 104(6): 620-628. [27] XU H Y, SHAO Z M, WANG Z J, et al. Experimental study on mechanical properties of fiber reinforced concrete: effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber[J]. Construction and Building Materials, 2020, 261: 120610. [28] LIU Q, TONG T, LIU S H, et al. Investigation of using hybrid recycled powder from demolished concrete solids and clay bricks as a pozzolanic supplement for cement[J]. Construction and Building Materials, 2014, 73: 754-763. [29] SUN Z H, LIU F J, TONG T, et al. Hydration of concrete containing hybrid recycled demolition powders[J]. Journal of Materials in Civil Engineering, 2017, 29(7): 04017037. [30] ZHANG D, JAWORSKA B, ZHU H, et al. Engineered cementitious composites (ECC) with limestone calcined clay cement (LC3)[J]. Cement and Concrete Composites, 2020, 114: 103766. [31] FERREIRO S, HERFORT D, DAMTOFT J S. Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay-limestone Portland cements[J]. Cement and Concrete Research, 2017, 101: 1-12. [32] DHANDAPANI Y, SAKTHIVEL T, SANTHANAM M, et al. Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3)[J]. Cement and Concrete Research, 2018, 107: 136-151. [33] ÖNER M, ERDOĞDU K, GÜNLÜ A. Effect of components fineness on strength of blast furnace slag cement[J]. Cement and Concrete Research, 2003, 33(4): 463-469. [34] SRIKANTH S, KRISHNA C B R, SRIKANTH T, et al. Effect of nano ground granulated blast furnace slag (GGBS) volume % on mechanical behaviour of high-performance sustainable concrete[J]. Journal of Nanomaterials, 2022, 2022: 1-5. [35] CHEN Z T, YANG Y Z, YAO Y. Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag[J]. Materials & Design, 2013, 44: 500-508. [36] OHNO M, LI V C. An integrated design method of engineered geopolymer composite[J]. Cement and Concrete Composites, 2018, 88: 73-85. [37] MANGAT P, LAMBERT P. Sustainability of alkali-activated cementitious materials and geopolymers[M]//Sustainability of Construction Materials. Amsterdam: Elsevier, 2016: 459-476. [38] PUERTAS F, ALONSO M M, GISMERA S, et al. Rheology of cementitious materials: alkali-activated materials or geopolymers[C]//MATEC Web of Conferences, 2018, 149: 01002. [39] NEUPANE K. Fly ash and GGBFS based powder-activated geopolymer binders: a viable sustainable alternative of Portland cement in concrete industry[J]. Mechanics of Materials, 2016, 103: 110-122. [40] SHI C J, JIMÉNEZ A F, PALOMO A. New cements for the 21st century: the pursuit of an alternative to Portland cement[J]. Cement and Concrete Research, 2011, 41(7): 750-763. [41] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12): 1232-1243. [42] NATH S K, MAITRA S, MUKHERJEE S, et al. Microstructural and morphological evolution of fly ash based geopolymers[J]. Construction and Building Materials, 2016, 111: 758-765. [43] YAN H D, SUN W, CHEN H S. The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete[J]. Cement and Concrete Research, 1999, 29(3): 423-426. [44] LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites[J]. Materials and Structures, 1995, 28(10): 586-595. [45] LI V C. Integrated structures and materials design[J]. Materials and Structures, 2007, 40(4): 387-396. [46] BENTUR A, IGARASHI S I, KOVLER K. Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates[J]. Cement and Concrete Research, 2001, 31(11): 1587-1591. [47] SAHMARAN M, LACHEMI M, HOSSAIN K M A, et al. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites[J]. ACI Materials Journal, 2009, 106(3): 308-316. [48] GAO S L, WANG Z, WANG W C, et al. Effect of shrinkage-reducing admixture and expansive agent on mechanical properties and drying shrinkage of engineered cementitious composite (ECC)[J]. Construction and Building Materials, 2018, 179: 172-185. [49] SOROUSHIAN P, NAGI M, HSU J. Optimization of the use of lightweight aggregates in carbon fiber reinforced cement[J]. ACI Materials Journal, 1992, 89(3): 267-276. [50] MARTINS A C P, FRANCO DE CARVALHO J M, COSTA L C B, et al. Steel slags in cement-based composites: an ultimate review on characterization, applications and performance[J]. Construction and Building Materials, 2021, 291: 123265. [51] ANDRADE H D, DE CARVALHO J M F, COSTA L C B, et al. Mechanical performance and resistance to carbonation of steel slag reinforced concrete[J]. Construction and Building Materials, 2021, 298: 123910. [52] ADESINA A, DAS S. Performance of engineered cementitious composites incorporating crumb rubber as aggregate[J]. Construction and Building Materials, 2021, 274: 122033. [53] LI Y Z, GUAN X C, ZHANG C C, et al. Development of high-strength and high-ductility ECC with saturated multiple cracking based on the flaw effect of coarse river sand[J]. Journal of Materials in Civil Engineering, 2020, 32(11): 04020317. [54] LI Y Z, LI J X, YANG E, et al. Investigation of matrix cracking properties of engineered cementitious composites (ECCs) incorporating river sands[J]. Cement Concrete Composites, 2021, 123: 104204. [55] 李 祚, 姚淇耀, 朱圣焱, 等. 乌兰布和沙漠砂制备高延性水泥基复合材料的力学性能[J]. 硅酸盐通报, 2021, 40(4): 1103-1115. LI Z, YAO Q Y, ZHU S Y, et al. Mechanical properties of engineered cementitious composites prepared with sand in ulanbuh desert[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1103-1115 (in Chinese). [56] SUBEDI S, ARCE G A, NOORVAND H, et al. Properties of engineered cementitious composites with raw sugarcane bagasse ash used as sand replacement[J]. Journal of Materials in Civil Engineering, 2021, 33(9): 4021231. [57] ZHOU Y W, GONG G Q, HUANG Y J, et al. Feasibility of incorporating recycled fine aggregate in high performance green lightweight engineered cementitious composites[J]. Journal of Cleaner Production, 2021, 280: 124445. [58] ADESINA A, DAS S. Sustainable utilization of recycled asphalt as aggregates in engineered cementitious composites[J]. Construction and Building Materials, 2021, 283: 122727. [59] ADESINA A, DAS S. Mechanical performance of engineered cementitious composite incorporating glass as aggregates[J]. Journal of Cleaner Production, 2020, 260: 121113. [60] HUANG X Y, RANADE R, NI W, et al. Development of green engineered cementitious composites using iron ore tailings as aggregates[J]. Construction and Building Materials, 2013, 44: 757-764. [61] TURK K, DEMIRHAN S. The mechanical properties of engineered cementitious composites containing limestone powder replaced by microsilica sand[J]. Canadian Journal of Civil Engineering, 2013, 40(2): 151-157. [62] HEIKAL M, EL-DIDAMONY H, MORSY M S. Limestone-filled pozzolanic cement[J]. Cement and Concrete Research, 2000, 30(11): 1827-1834. [63] 元成方, 李好飞, 王 娣, 等. 水胶比对再生砖粉ECC工作性能和力学性能的影响[J]. 硅酸盐通报, 2021, 40(11): 3723-3729. YUAN C F, LI H F, WANG D, et al. Effect of water-binder ratio on working performance and mechanical properties of recycled brick powder ECC[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3723-3729 (in Chinese). [64] ZHENG C C, LOU C, DU G, et al. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate[J]. Results in Physics, 2018, 9: 1317-1322. [65] BISHT K, RAMANA P V. Sustainable production of concrete containing discarded beverage glass as fine aggregate[J]. Construction and Building Materials, 2018, 177: 116-124. [66] WEI D, ZHU P H, YAN X C, et al. Potential evaluation of waste recycled aggregate concrete for structural concrete aggregate from freeze-thaw environment[J]. Construction and Building Materials, 2022, 321: 126291. [67] NEDELJKOVIC' M, LUKOVIC' M, VAN BREUGEL K, et al. Development and application of an environmentally friendly ductile alkali-activated composite[J]. Journal of Cleaner Production, 2018, 180: 524-538. [68] REDON C, LI V C, WU C, et al. Measuring and modifying interface properties of PVA fibers in ECC matrix[J]. Journal of Materials in Civil Engineering, 2001, 13(6): 399-406. [69] 黄政宇, 李操旺, 刘永强. 聚乙烯纤维对超高性能混凝土性能的影响[J]. 材料导报, 2014, 28(20): 111-115. HUANG Z Y, LI C W, LIU Y Q. The effects of polyethylene fiber on the properties of UHPC[J]. Materials Review, 2014, 28(20): 111-115 (in Chinese). [70] TURK K, DEMIRHAN S. Effect of limestone powder on the rheological, mechanical and durability properties of ECC[J]. European Journal of Environmental and Civil Engineering, 2017, 21(9): 1151-1170. [71] LI V C. From micromechanics to structural engineering-the design of cementitous composites for civil engineering applications[J]. JSCE Journal of Structural Mechanics and Earthquake Engineering, 1993, 10(2): 37-48. [72] YU K Q, DING Y, LIU J P, et al. Energy dissipation characteristics of all-grade polyethylene fiber-reinforced engineered cementitious composites (PE-ECC)[J]. Cement and Concrete Composites, 2020, 106: 103459. [73] 姚淇耀, 陆宸宇, 罗月静, 等. PE/PVA纤维海砂ECC的拉伸性能与本构模型[J]. 建筑材料学报, 2022, 25(9): 976-983. YAO Q Y, LU C Y, LUO Y J, et al. Tensile properties and constitutive model of PE/PVA fiber sea sand ECC[J]. Journal of Building Materials, 2022, 25(9): 976-983 (in Chinese). [74] ZHANG M R, FANG C Q, ZHOU S S, et al. Modification of asphalt by dispersing waste polyethylene and carbon fibers in it[J]. New Carbon Materials, 2016, 31(4): 424-430. [75] PUNITH V S, VEERARAGAVAN A. Characterization of OGFC mixtures containing reclaimed polyethylene fibers[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 335-341. [76] YU K Q, YU J T, DAI J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers[J]. Construction and Building Materials, 2018, 158: 217-227. [77] BRANSTON J, DAS S, KENNO S Y, et al. Mechanical behaviour of basalt fibre reinforced concrete[J]. Construction and Building Materials, 2016, 124: 878-886. [78] 王振山, 邢立新, 吴 波, 等. 硫酸腐蚀下玄武岩纤维掺量对混凝土耐久性能影响研究[J]. 建筑结构, 2020, 50(15): 91-95+46. WANG Z S, XING L X, WU B, et al. Research on influence of basalt fiber addition on concrete durability under sulfuric acid environment[J]. Building Structure, 2020, 50(15): 91-95+46 (in Chinese). [79] 于 泳, 朱 涵, 朱学超, 等. 玄武岩纤维混凝土抗冲击性能研究[J]. 建筑结构学报, 2015, 36(S2): 354-358. YU Y, ZHU H, ZHU X C, et al. Study on impact resistance of basalt fiber reinforced concrete[J]. Journal of Building Structures, 2015, 36(S2): 354-358 (in Chinese). [80] FELEKOGLU B, TOSUN-FELEKOGLU K, RANADE R, et al. Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC[J]. Composites Part B: Engineering, 2014, 60: 359-370. [81] LIN J X, SONG Y, XIE Z H, et al. Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers[J]. Journal of Building Engineering, 2020, 29: 101097. [82] SONG N X, SONG M, ZHANG Y L, et al. Study on mechanical performance of ECC reinforced by polypropylene fiber mixed with manufactured sand and carbon black (CBMSPP-ECC) based on response surface method[J]. Advances in Materials Science and Engineering, 2022, 2022: 1-10. [83] 史建丽, 田 砾, 赵铁军, 等. 天然纤维增强水泥基材料轴拉性能试验研究[J]. 混凝土与水泥制品, 2015(3): 55-57. SHI J L, TIAN L, ZHAO T J, et al. Experimental study on uniaxial tension of natural fiber reinforced cement-based materials[J]. China Concrete and Cement Products, 2015(3): 55-57 (in Chinese). [84] 段焱侠, 董 莪, 李发平, 等. 改性剑麻纤维对水泥砂浆的性能研究[J]. 武汉轻工大学学报, 2018, 37(3): 60-63+97. DUAN Y X, DONG E, LI F P, et al. Study on properties of modified sisal fiber to cement mortar[J]. Journal of Wuhan Polytechnic University, 2018, 37(3): 60-63+97 (in Chinese). [85] 杨政险, 李 慷, 张 勇, 等. 天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J]. 硅酸盐学报, 2022, 50(2): 522-532. YANG Z X, LI K, ZHANG Y, et al. Effect of pretreatment method of natural plant fibers on properties of cement-based materials: a short review[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 522-532 (in Chinese). [86] EHRENBRING H Z, PACHECO F, CHRIST R, et al. Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers[J]. Construction and Building Materials, 2022, 346: 128355. |
[1] | 郭政, 穆松, 庄智杰, 张浩, 张蕾. 中/高度真空环境下水泥基材料性能的研究进展[J]. 硅酸盐通报, 2023, 42(9): 3075-3082. |
[2] | 邓永刚, 代婷婷, 孙晨, 杨元全. 沸石微粉对磷酸钾镁水泥水化性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3083-3088. |
[3] | 黎帅, 周凤娇, 谭新宇, 张宾, 林永权, 陶从喜, 黄明俊. 二氧化碳浓度对低钙固碳胶凝材料性能影响及机理研究[J]. 硅酸盐通报, 2023, 42(9): 3109-3116. |
[4] | 张品乐, 邓让, 胡静, 吴磊, 陶忠. 钢-PVA混杂纤维增强工程水泥基复合材料弯曲性能研究[J]. 硅酸盐通报, 2023, 42(9): 3125-3134. |
[5] | 邓祥辉, 张鹏, 王睿, 吴起源, 王旭. 青藏高原地区纤维混凝土抗冻耐久性试验与损伤模型研究[J]. 硅酸盐通报, 2023, 42(9): 3143-3153. |
[6] | 周文建, 薛文, 许丹, 李颖. 山核桃蒲壳生物炭砂浆基本性能及机理研究[J]. 硅酸盐通报, 2023, 42(9): 3186-3195. |
[7] | 陈友治, 吴修齐, 殷伟淞, 李万民, 汤世昌. 电石渣对复合胶凝材料力学性能和微观结构的影响[J]. 硅酸盐通报, 2023, 42(9): 3196-3203. |
[8] | 李学亮, 赵庆朝, 李伟光, 李勇, 朱阳戈, 宋厚彬, 杨浩, 张艳平. 煤系偏高岭土对混凝土力学性能及微观结构的影响机理[J]. 硅酸盐通报, 2023, 42(9): 3221-3230. |
[9] | 郭志翔, 王琴, 张秋臣, 郑海宇, 刘克俊. 氟化物对石膏基胶凝材料结构和性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3248-3257. |
[10] | 黄荣贵, 陶忠, 吴磊, 沈金金, 徐伟杰. 聚乙烯醇纤维对磷建筑石膏基复合材料性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3258-3266. |
[11] | 杨医博, 梁宋梭, 刘福财, 谢锐, 欧锦盛, 郭文瑛, 王恒昌. 低吸水率陶瓷再生砂对砂浆力学和干燥收缩性能的影响及机理研究[J]. 硅酸盐通报, 2023, 42(9): 3277-3285. |
[12] | 彭蔓, 高涌涛, 韩杨, 陈秀丽, 寇雄俊. 废旧钢纤维增强橡胶混凝土力学性能试验研究[J]. 硅酸盐通报, 2023, 42(9): 3286-3294. |
[13] | 袁志勇, 张学日, 李凯, 许承铭, 吴佳莉, 廖仓冬, 郑猛, 吴英豪, 阎法强. 高铝瓷组成、结构与力学性能随烧成温度的演变[J]. 硅酸盐通报, 2023, 42(9): 3315-3323. |
[14] | 宋子贤, 温建华. 3MTM实心陶瓷微球在瓷器补配中的性能研究[J]. 硅酸盐通报, 2023, 42(9): 3342-3349. |
[15] | 李晓东, 滕逸伟, 赵建宁, 闫升, 杨建荣, 贾小龙. 大掺量煤气化炉渣稳定基层混合料的制备及路用性能研究[J]. 硅酸盐通报, 2023, 42(9): 3412-3420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||