[1] HU W B, LIU Y, WITHERS R L, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials[J]. Nature Materials, 2013, 12(9): 821-826. [2] BRÄUNLICH P. Thermally stimulated relaxation in solids[A]. New York: Springer, 1979. [3] HINO T. Thermally stimulated characteristics in solid dielectrics[J]. IEEE Transactions on Electrical Insulation, 1980, EI-15(3): 301-311. [4] LIU W, RANDALL C A. Thermally stimulated relaxation in Fe-doped SrTiO3systems: I. single crystals[J]. Journal of the American Ceramic Society, 2008, 91(10): 3245-3250. [5] YOON S H, RANDALL C A, HUR K H. Correlation between resistance degradation and thermally stimulated depolarization current in acceptor (Mg)-doped BaTiO3 submicrometer fine-grain ceramics[J]. Journal of the American Ceramic Society, 2010, 93(7): 1950-1956. [6] LIU W, RANDALL C A. Thermally stimulated relaxation in Fe-doped SrTiO3 systems: II. degradation of SrTiO3 dielectrics[J]. Journal of the American Ceramic Society, 2008, 91(10): 3251-3257. [7] YOON S H, RANDALL C A, HUR K H. Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3 bulk ceramics: II. thermally stimulated depolarization current analysis[J]. Journal of the American Ceramic Society, 2009, 92(8): 1766-1772. [8] YOON S H, PARK J S, KIM S H, et al. Thermally stimulated depolarization current analysis for the dielectric aging of Mn and V-codoped BaTiO3 multi layer ceramic capacitor[J]. Applied Physics Letters, 2013, 103(4): 042901. [9] YOON S H, KIM S H, KIM D Y. Correlation between I (current)-V (voltage) characteristics and thermally stimulated depolarization current of Mn-doped BaTiO3 multilayer ceramic capacitor[J]. Journal of Applied Physics, 2013, 114(7): 074102. [10] LEE H, KIM J R, LANAGAN M J, et al. High-energy density dielectrics and capacitors for elevated temperatures: Ca(Zr, Ti)O3[J]. Journal of the American Ceramic Society, 2013, 96(4): 1209-1213. [11] RANDALL C A, MAIER R, QU W, et al. Improved reliability predictions in high permittivity dielectric oxide capacitors under high dc electric fields with oxygen vacancy induced electromigration[J]. Journal of Applied Physics, 2013, 113(1): 014101. [12] AKKOPRU-AKGUN B, MARINCEL D M, TSUJI K, et al. Thermally stimulated depolarization current measurements on degraded lead zirconate titanate films[J]. Journal of the American Ceramic Society, 2021, 104(10): 5270-5280. [13] PHOTOPOULOS P, TSONOS C, STAVRAKAS I, et al. A method for the calculation the activation energies of thermally stimulated depolarization current peaks: application in polyvinylidene fluoride/graphene nanocomposites[J]. Physica B: Condensed Matter, 2021, 622: 413338. [14] NASR G A, EL-SHERIF A, OMAR M, et al. TSDC studies of LASER irradiated and unirradiated PVDF composites doped with Pd(II) benzimidazole complex[J]. Journal of Multidisciplinary Engineering Science and Technology, 2022, 9(2): 15102-15111. [15] DIAZ J C C A, M’PEKO J C, VENET M, et al. Unveiling the high-temperature dielectric response of Bi0.5Na0.5TiO3[J]. Scientific Reports, 2020, 10(1): 1-11. [16] ZHANG X H, YUE Z X, PENG B, et al. Polarization response and thermally stimulated depolarization current of BaTiO3-based Y5V ceramic multilayer capacitors[J]. Journal of the American Ceramic Society, 2014, 97(9): 2921-2927. [17] ZHANG X H, ZHANG Y, ZHANG J, et al. Microwave dielectric properties and thermally stimulated depolarization currents study of (1-x)Ba0.6Sr0.4La4Ti4O15-xTiO2 ceramics[J]. Journal of the American Ceramic Society, 2014, 97(10): 3170-3176. [18] XIE Y M, ZANG H, CENG W D, et al. Thermally stimulated depolarization current properties of Co4Nb2O9 ceramics[J]. Journal of the American Ceramic Society, 2019, 102(6): 3432-3437. [19] ZHANG X H, ZHANG J, ZHANG Y, et al. Microwave dielectric properties and thermally stimulated relaxations of Ba0.6Sr0.4La4Ti4O15-TiO2 composite ceramics by flowing oxygen sintering[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(4): 3400-3406. [20] ZHANG J, YUE Z X, ZHOU Y Y, et al. Temperature-dependent dielectric properties, thermally-stimulated relaxations and defect-property correlations of TiO2 ceramics for wireless passive temperature sensing[J]. Journal of the European Ceramic Society, 2016, 36(8): 1923-1930. [21] ZHANG J, YUE Z X, ZHOU Y Y, et al. Microwave dielectric properties and thermally stimulated depolarization currents of (1-x)MgTiO3-xCa0.8Sr0.2TiO3 ceramics[J]. Journal of the American Ceramic Society, 2015, 98(5): 1548-1554. [22] ZHANG X H, ZHANG J, ZHOU Y Y, et al. Colossal permittivity and defect-dipoles contribution for Ho0.02Sr0.97TiO3 ceramics[J]. Journal of Alloys and Compounds, 2018, 767: 424-431. [23] ZHANG X H, ZHANG J, XIE Z K, et al. Structure, microwave dielectric properties and thermally stimulated depolarization currents of (1-x)Ba0.6Sr0.4La4Ti4O15-xBa5Nb4O15 solid solutions[J]. Journal of the American Ceramic Society, 2015, 98(4): 1245-1252. [24] ZHANG X H, ZHANG L, ZHANG J, et al. Dielectric response and thermally stimulated depolarization current analysis of BaNd1.76Bi0.24Ti5O14 high-temperature microwave capacitors[J]. Journal of Materials Science, 2015, 50(3): 1141-1149. [25] ZHANG J, ZHOU Y Y, YUE Z X, et al. Microwave dielectric properties and thermally stimulated depolarization currents of (1-x)Ba(Mg1/3Nb2/3)O3-xBaSnO3 solid solutions[J]. Journal of the American Ceramic Society, 2015, 98(12): 3942-3947. [26] ZHANG J, ZHOU Y Y, PENG B, et al. Microwave dielectric properties and thermally stimulated depolarization currents of MgF2-doped diopside ceramics[J]. Journal of the American Ceramic Society, 2014, 97(11): 3537-3543. [27] ZHANG J, YUE Z X, LI L T. Crystal structure, defect relaxation, and microwave dielectric properties of Ba [(Mg1/3Nb2/3)1-xHfx]O3 solid solutions[J]. Journal of the American Ceramic Society, 2018, 101(5): 1974-1981. [28] ZHANG J, YUE Z X, LUO Y, et al. Understanding the thermally stimulated relaxation and defect behavior of Ti-containing microwave dielectrics: a case study of BaTi4O9[J]. Materials & Design, 2017, 130: 479-487. [29] GUO W J, ZHANG J, LUO Y, et al. Microwave dielectric properties and thermally stimulated depolarization of Al-doped Ba4(Sm, Nd)9.33Ti18O54 ceramics[J]. Journal of the American Ceramic Society, 2019, 102(9): 5494-5502. [30] ZHANG X H, ZHANG J, ZHOU Y Y, et al. Highly accelerated resistance degradation and thermally stimulated relaxation in BaTiO3-based multilayer ceramic capacitors with Y5V specification[J]. Journal of Alloys and Compounds, 2016, 662: 308-314. [31] ZHANG M H, WANG K, DU Y J, et al. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite[J]. Journal of the American Chemical Society, 2017, 139(10): 3889-3895. [32] WANG K, HUSSAIN A, JO W, et al. Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics[J]. Journal of the American Ceramic Society, 2012, 95(7): 2241-2247. [33] CEN Z Y, HUAN Y, FENG W, et al. A high temperature stable piezoelectric strain of KNN-based ceramics[J]. Journal of Materials Chemistry A, 2018, 6(41): 19967-19973. [34] HUAN Y, WANG X H, WEI T, et al. Defect engineering of high-performance potassium sodium niobate piezoelectric ceramics sintered in reducing atmosphere[J]. Journal of the American Ceramic Society, 2017, 100(5): 2024-2033. [35] SHI Y Z, ZHANG L, ZHANG J, et al. Thermally stimulated depolarization currents and dielectric properties of Mg0.95Ca0.05TiO3 filled HDPE composites[J]. AIP Advances, 2017, 7(12): 125315. [36] ZHANG L, ZHANG J, YUE Z X, et al. Thermally stable polymer-ceramic composites for microwave antenna applications[J]. Journal of Advanced Ceramics, 2016, 5(4): 269-276. |