[1] 周永祥, 王继忠. 预拌固化土的原理及工程应用前景[J]. 新型建筑材料, 2019, 46(10): 117-120. ZHOU Y X, WANG J Z. Principle of ready-mixed solidified soil and its prospects for engineering application[J]. New Building Materials, 2019, 46(10): 117-120 (in Chinese). [2] 力乙鹏, 李 婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(增刊2): 1273-1277+1298. LI Y P, LI T. Stability mechanism and research progress of soil stabilizer[J]. Materials Reports, 2020, 34(supplement 2): 1273-1277+1298 (in Chinese). [3] 樊恒辉, 吴普特, 高建恩, 等. 水泥基土壤固化剂固化土的微观结构特征[J]. 建筑材料学报, 2010, 13(5): 669-674. FAN H H, WU P T, GAO J E, et al. Microstructure characteristics of soil stabilized with cement-based soil stabilizer[J]. Journal of Building Materials, 2010, 13(5): 669-674 (in Chinese). [4] 张利祥, 高一强, 黄建洪, 等. 赤泥资源化综合利用研究进展[J]. 硅酸盐通报, 2020, 39(1): 144-149. ZHANG L X, GAO Y Q, HUANG J H, et al. Research progress on resource comprehensive utilization of red mud[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 144-149 (in Chinese). [5] 邹 敏, 沈 玉, 刘娟红. 钢渣粉在水泥基材料中应用研究综述[J]. 硅酸盐通报, 2021, 40(9): 2964-2977. ZOU M, SHEN Y, LIU J H. Review on application of steel slag powder in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2964-2977 (in Chinese). [6] 郝雅芬, 温 浩, 樊珮阁, 等. 冻融循环对赤泥-钢渣改性水泥土强度的试验研究[J]. 太原理工大学学报, 2021, 52(1): 117-121. HAO Y F, WEN H, FAN P G, et al. Experimental study of freeze-thaw cycle on strength of cemented soil modified with red mud-steel slag[J]. Journal of Taiyuan University of Technology, 2021, 52(1): 117-121 (in Chinese). [7] 李丹丹. 氯盐干湿循环侵蚀作用下水泥钢渣粉固化土工程性质研究[D]. 青岛: 山东科技大学, 2020. LI D D. Study on the engineering properties of cement steel slag powder solidified soil under chloride and dry-wet cycles erosion[D]. Qingdao: Shandong University of Science and Technology, 2020 (in Chinese). [8] 朱李俊, 王 磊, 程东波, 等. 钢渣微粉用于重金属污染土壤固化剂实验研究[J]. 硅酸盐通报, 2016, 35(7): 2281-2286. ZHU L J, WANG L, CHENG D B, et al. Experimental study of steel slag powder as solidified agent to heavy metal contaminated soil[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2281-2286 (in Chinese). [9] 谭 波, 刘 琦, 陈 平. 钢渣、赤泥、电解锰渣协同制备路基水稳材料及性能研究[J]. 武汉理工大学学报, 2021, 43(8): 51-56. TAN B, LIU Q, CHEN P. Study on preparation and properties of subgrade water stabilized materials with steel slag, red mud and electrolytic manganese slag[J]. Journal of Wuhan University of Technology, 2021, 43(8): 51-56 (in Chinese). [10] DEVARAJ V, MANGOTTIRI V, BALU S. Sustainable utilization of industrial wastes in controlled low-strength materials: a review[J]. Environmental Science and Pollution Research, 2023, 30(6): 14008-14028. [11] 赵卫国. 赤泥-偏高岭土流态固化土在填筑工程中的应用研究[D]. 太原: 太原理工大学, 2022. ZHAO W G. Study on application of red mud-metakaolin fluid solidified soil in filling engineering[D].Taiyuan: Taiyuan University of Technology, 2022 (in Chinese). [12] 张 健, 王 川, 李召峰, 等. 赤泥基绿色高性能注浆材料工程特性试验研究[J]. 岩石力学与工程学报, 2022, 41(增刊2): 3339-3352. ZHANG J, WANG C, LI Z F, et al. Experimental study on the engineering charateristics of red mud-based green high-performance grouting material[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(supplement 2): 3339-3352 (in Chinese). [13] 王旭东, 李伟斌, 赵 君, 等. 新型赤泥基充填材料的制备与性能研究[J]. 硅酸盐通报, 2021, 40(4): 1280-1285+1295. WANG X D, LI W B, ZHAO J, et al. Preparation and properties of new packing material contained red mud[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1280-1285+1295 (in Chinese). [14] 赵 鑫. 水泥稳定钢渣碎石配合比设计及疲劳性能研究[J]. 粉煤灰综合利用, 2020, 34(6): 84-88+140. ZHAO X. Research on mix design and fatigue performance of cement stabilized steel slag and macadam[J]. Fly Ash Comprehensive Utilization, 2020, 34(6): 84-88+140 (in Chinese). [15] WANG L H, FENG W K, LAZARO S A M, et al. Engineering properties of soil-based controlled low-strength materials made from local red mud and silty soil[J]. Construction and Building Materials, 2022, 358: 129453. [16] 武 涛, 刘剑平, 李贝宁, 等. Na/Al对赤泥-煤系偏高岭土地聚合物电化学响应的影响[J]. 科学技术与工程, 2020, 20(28): 11740-11745. WU T, LIU J P, LI B N, et al. Effects of Na/Al on electrochemical responses of polymers in red mud-coal metakaolin geopolymer[J]. Science Technology and Engineering, 2020, 20(28): 11740-11745 (in Chinese). [17] 蒋兴教, 肖莲珍. 无电极电阻率法研究水泥基复合材料的导电机理[J]. 武汉工程大学学报, 2020, 42(6): 637-641. JIANG X J, XIAO L Z. Conduction mechanism of cement-based composite materials by non-contact resistivity method[J]. Journal of Wuhan Institute of Technology, 2020, 42(6): 637-641 (in Chinese). [18] 王聪聪, 杜红秀, 石丽娜, 等. 碳纤维-钢纤维水泥基复合材料电学性能试验研究[J]. 硅酸盐通报, 2022, 41(8): 2696-2705. WANG C C, DU H X, SHI L N, et al. Experimental study on electrical properties of carbon fiber-steel fiber cement matrix composites[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2696-2705 (in Chinese). [19] HE F Q, WANG R P, SHI C J, et al. Error evaluation and correction of stray impedance during measurement and interpretation of AC impedance of cement-based materials[J]. Cement and Concrete Composites, 2016, 72: 190-200. [20] 周永祥, 刘 倩, 王祖琦, 等. 流态固化土用无熟料胶凝材料的性能研究[J]. 硅酸盐通报, 2022, 41(10): 3548-3555. ZHOU Y X, LIU Q, WANG Z Q, et al. Properties of cementitious materials without clinker for fluid solidified soil[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3548-3555 (in Chinese). [21] 高 强. 水泥基流态土固化剂的试验研究[J]. 中国建材科技, 2021, 30(4): 68-73. GAO Q. Technology and application of cement-based fluidic soil curing agent[J]. China Building Materials Science & Technology, 2021, 30(4): 68-73 (in Chinese). |