[1] 郝 卿. 核废料处理方法及管理策略研究[D]. 北京: 华北电力大学, 2013. HAO Q. Study on nuclear waste treatment methods and management strategies[D]. Beijing: North China Electric Power University, 2013 (in Chinese). [2] 裴 勇, 潘跃龙. 高整体容器在我国放射性废物管理中的应用分析[J]. 核动力工程, 2012, 33(3): 125-128. PEI Y, PAN Y L. Application analysis of high integrity container on domestic radioactive waste management[J]. Nuclear Power Engineering, 2012, 33(3): 125-128 (in Chinese). [3] 罗上庚. 谈谈高整体容器[J]. 核安全, 2009, 8(4): 9-15. LUO S. Talk about high integrity container[J]. Nuclear Safety, 2009, 8(4): 9-15 (in Chinese). [4] JOSEPHSON W S. High integrity container evaluation for solid waste disposal burial containers[R]. Fluor Daniel Hanford, Inc., Richland, WA (United States), 1996. [5] 吴 浩. 低、中放核废料处置用混凝土高整体容器及其性能的研究[J]. 中国建材, 2015, 64(3): 90-93. WU H. Study on high monolithic concrete container for low and medium level nuclear waste disposal and its performance[J]. China Building Materials, 2015, 64(3): 90-93 (in Chinese). [6] 中国核电工程有限公司, 清华大学, 中国原子能科学研究院. 低、中水平放射性废物高完整性容器-混凝土容器: GB 36900.2—2018[S]. 北京: 中国环境科学出版社, 2009. China Nuclear Power Engineering Co., Ltd., Tsinghua University, China Institute of Atomic Energy. Low and medium level radioactive waste high integrity container-concrete container: GB 36900.2—2018 [S]. Beijing: China Environmental Science Press, 2009 (in Chinese). [7] 薛海涛, 徐 勇. 硅微粉在耐火浇注料中的应用[J]. 工业炉, 2014, 36(4): 27-30. XUE H T, XU Y. Application of microsilica in refractory castables[J]. Industrial Furnace, 2014, 36(4): 27-30 (in Chinese). [8] 陈 伟, 王 蒙, 李 秋, 等. 硅微粉对水泥浆体流变性能的影响[J]. 硅酸盐通报, 2017, 36(9): 3133-3138. CHEN W, WANG M, LI Q, et al. Influence of silicon powder on cement rheological properties[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9): 3133-3138 (in Chinese). [9] 贺智勇, 彭小艳, 王素珍, 等. 硅微粉对超低水泥浇注料流动性的影响[J]. 硅酸盐通报, 2005, 24(6): 53-55. HE Z Y, PENG X Y, WANG S Z, et al. Effect of microsilica on flowability of ultra-low cement castable[J]. Bulletin of the Chinese Ceramic Society, 2005, 24(6): 53-55 (in Chinese). [10] 江敏芳, 吴和平, 许 闽, 等. 超细活性硅微粉对混凝土耐久性影响研究[J]. 混凝土, 2013(7): 68-72+75. JIANG M F, WU H P, XU M, et al. Effect of ultra-fine active silica powder on concrete durability[J]. Concrete, 2013(7): 68-72+75 (in Chinese). [11] 雷文晗, 彭小芹, 谢永江, 等. 硅微粉对混凝土性能的影响[J]. 混凝土, 2011(6): 100-101+107. LEI W H, PENG X Q, XIE Y J, et al. Influence of silica powder on the properties of concrete[J]. Concrete, 2011(6): 100-101+107 (in Chinese). [12] KORPA A, KOWALD T, TRETTIN R. Phase development in normal and ultra high performance cementitious systems by quantitative X-ray analysis and thermoanalytical methods[J]. Cement and Concrete Research, 2009, 39(2): 69-76. [13] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration of Market Supervision and Administration.Standard for test methods of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [14] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard of test methods for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S].Beijing: China Building Industry Press, 2009 (in Chinese). [15] ABU AISHEH Y I, ATRUSHI D S, AKEED M H, et al. Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC)[J]. Case Studies in Construction Materials, 2022, 17: e01245. [16] TAYEH B A, AKEED M H, QAIDI S, et al. Influence of microsilica and polypropylene fibers on the fresh and mechanical properties of ultra-high performance geopolymer concrete (UHP-GPC)[J]. Case Studies in Construction Materials, 2022, 17: e01367. [17] SZELĄG M. Fractal characterization of thermal cracking patterns and fracture zone in low-alkali cement matrix modified with microsilica[J]. Cement and Concrete Composites, 2020, 114: 103732. [18] MERMERDAŞ K, İPEK S, ALGıN Z, et al. Combined effects of microsilica, steel fibre and artificial lightweight aggregate on the shrinkage and mechanical performance of high strength cementitious composite[J]. Construction and Building Materials, 2020, 262: 120048. [19] 李文丽. 掺超细活性硅微粉混凝土的抗冻、抗碳化及抗氯离子渗透性能研究[J]. 结构工程师, 2014, 30(5): 187-191. LI W L. The study of freezethraw durability, carbonation resistance and ability to resist chloride ion penetration of ultra-fine active silica powder concrete[J]. Structural Engineers, 2014, 30(5): 187-191 (in Chinese). [20] PRIER W H. Frost resistance of concrete containing microsilica[M]//Proceedings of the Fourth International Conference on Durability of Building Materials and Components. Amsterdam: Elsevier, 1987: 974-981. [21] SHAABAN I, ASSI N. Measurement of the leaching rate of radionuclide 134Cs from the solidified radioactive sources in Portland cement mixed with microsilica and barite matrixes[J]. Journal of Nuclear Materials, 2011, 415(1): 132-137. |