硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (5): 1672-1687.
所属专题: 资源综合利用
张熠爽1, 周健1,2, 李辉1, 徐名凤1
收稿日期:
2023-01-06
修订日期:
2023-02-19
出版日期:
2023-05-15
发布日期:
2023-06-01
通信作者:
李 辉,博士,副教授。E-mail:hla_zyj@hebut.edu.cn
作者简介:
张熠爽(1997—),女,硕士研究生。主要从事水泥基材料的研究。E-mail:zhangyishuang777@163.com
基金资助:
ZHANG Yishuang1, ZHOU Jian1,2, LI Hui1, XU Mingfeng1
Received:
2023-01-06
Revised:
2023-02-19
Online:
2023-05-15
Published:
2023-06-01
摘要: 氯离子(Cl-)引起的锈蚀是影响钢筋混凝土使用寿命的主要问题。硅酸盐水泥-富铝材料(粉煤灰、矿渣等)复合体系可以有效结合Cl-,提高钢筋混凝土抵抗Cl-侵蚀的能力,成为当前的研究热点。然而,现有研究对硅酸盐水泥-富铝材料复合体系Cl-结合能力的横向对比较为缺乏。本文首先介绍了Cl-在水泥体系中的结合机理,重点总结了不同硅酸盐水泥-富铝材料复合体系的Cl-结合能力,并以Al2O3含量作为主要变量横向对比了现有研究中复合体系的Cl-结合能力。同时,阐述并分析了影响复合体系Cl-结合能力的多方面因素。最后,为后续研究提供了更为准确地衡量与对比多种硅酸盐水泥-富铝材料复合体系Cl-结合能力的参考方案,同时为设计新型高性能硅酸盐水泥-富铝材料复合体系提供理论基础。
中图分类号:
张熠爽, 周健, 李辉, 徐名凤. 硅酸盐水泥-富铝材料复合体系Cl-结合能力的研究进展[J]. 硅酸盐通报, 2023, 42(5): 1672-1687.
ZHANG Yishuang, ZHOU Jian, LI Hui, XU Mingfeng. Research Progress on Cl- Binding Capacity of Portland Cement and Aluminium-Rich Material Composite Systems[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(5): 1672-1687.
[1] THOMAS M. Chloride thresholds in marine concrete[J]. Cement and Concrete Research, 1996, 26(4): 513-519. [2] MANGAT P S, GURUSAMY K. Chloride diffusion in steel fibre reinforced marine concrete[J]. Cement and Concrete Research, 1987, 17(3): 385-396. [3] APOSTOLOPOULOS C A, DEMIS S, PAPADAKIS V G. Chloride-induced corrosion of steel reinforcement-mechanical performance and pit depth analysis[J]. Construction and Building Materials, 2013, 38: 139-146. [4] CAI R, HAN T H, LIAO W Y, et al. Prediction of surface chloride concentration of marine concrete using ensemble machine learning[J]. Cement and Concrete Research, 2020, 136: 106164. [5] MEIRA G R, ANDRADE C, ALONSO C, et al. Modelling sea-salt transport and deposition in marine atmosphere zone: a tool for corrosion studies[J]. Corrosion Science, 2008, 50(9): 2724-2731. [6] CHANG H L, JIN Z Q, WANG P G, et al. Comprehensive resistance of fair-faced concrete suffering from sulfate attack under marine environments[J]. Construction and Building Materials, 2021, 277: 122312. [7] YI Y, ZHU D J, GUO S C, et al. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment[J]. Cement and Concrete Composites, 2020, 113: 103695. [8] ZHOU Y, GENCTURK B, WILLAM K, et al. Carbonation-induced and chloride-induced corrosion in reinforced concrete structures[J]. Journal of Materials in Civil Engineering, 2015, 27(9): 04014245. [9] ZHU Q, JIANG L H, CHEN Y, et al. Effect of chloride salt type on chloride binding behavior of concrete[J]. Construction and Building Materials, 2012, 37: 512-517. [10] SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride[J]. Cement and Concrete Composites, 1998, 20(4): 263-281. [11] BALONIS M, LOTHENBACH B, LE SAOUT G, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems[J]. Cement and Concrete Research, 2010, 40(7): 1009-1022. [12] LUO R, CAI Y B, WANG C Y, et al. Study of chloride binding and diffusion in GGBS concrete[J]. Cement and Concrete Research, 2003, 33(1): 1-7. [13] BAO L S, ZHANG X F, YU L, et al. Study on solidification mechanism of chloride salt in base course material of cement-fly-ash-flushed-by-seawater[J]. Advanced Materials Research, 2011, 236/237/238: 755-761. [14] ANN K Y, KIM T S, KIM J H, et al. The resistance of high alumina cement against corrosion of steel in concrete[J]. Construction and Building Materials, 2010, 24(8): 1502-1510. [15] RAMACHANDRAN V S. Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride[J]. Matériaux et Construction, 1971, 4(1): 3-12. [16] LABBEZ C, POCHARD I, JÖNSSON B, et al. C-S-H/solution interface: experimental and Monte Carlo studies[J]. Cement and Concrete Research, 2011, 41(2): 161-168. [17] YOSHIDA S, ELAKNESWARAN Y, NAWA T. Electrostatic properties of C-S-H and C-A-S-H for predicting calcium and chloride adsorption[J]. Cement and Concrete Composites, 2021, 121: 104109. [18] CAO Q Y, XU Y D, FANG J K, et al. Influence of pore size and fatigue loading on NaCl transport properties in C-S-H nanopores: a molecular dynamics simulation[J]. Materials (Basel, Switzerland), 2020, 13(3): 700. [19] ZIBARA H. Binding of external chlorides by cement pastes[D]. Toronto: University of Toronto, 2001. [20] XU J X, ZHANG C K, JIANG L H, et al. Releases of bound chlorides from chloride-admixed plain and blended cement pastes subjected to sulfate attacks[J]. Construction and Building Materials, 2013, 45: 53-59. [21] MAVROPOULOU N, KATSIOTIS N, GIANNAKOPOULOS J, et al. Durability evaluation of cement exposed to combined action of chloride and sulphate ions at elevated temperature: the role of limestone filler[J]. Construction and Building Materials, 2016, 124: 558-565. [22] 王绍东, 黄煜镔, 王 智. 水泥组分对混凝土固化氯离子能力的影响[J]. 硅酸盐学报, 2000, 28(6): 570-574. WANG S D, HUANG Y B, WANG Z. Concrete resistance to chloride ingress: effect of cement composition[J]. Journal of the Chinese Ceramic Society, 2000, 28(6): 570-574 (in Chinese). [23] APPELO C A J. The anion exchange properties of AFm (hydrocalumite-group) minerals defined from solubility experiments and crystallographic information[J]. Cement and Concrete Research, 2021, 140: 106270. [24] FLOREA M V A, BROUWERS H J H. Chloride binding related to hydration products[J]. Cement and Concrete Research, 2012, 42(2): 282-290. [25] CHEN P, MA B G, TAN H B, et al. Effects of amorphous aluminum hydroxide on chloride immobilization in cement-based materials[J]. Construction and Building Materials, 2020, 231: 117171. [26] ZHAO Y F, HU X, YUAN Q, et al. Effects of water to binder ratio on the chloride binding behaviour of artificial seawater cement paste blended with metakaolin and silica fume[J]. Construction and Building Materials, 2022, 353: 129110. [27] 王小刚, 史才军, 何富强, 等. 氯离子结合及其对水泥基材料微观结构的影响[J]. 硅酸盐学报, 2013, 41(2): 187-198. WANG X G, SHI C J, HE F Q, et al. Chloride binding and its effects on microstructure of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 187-198 (in Chinese). [28] HIRAO H, YAMADA K, TAKAHASHI H, et al. Chloride binding of cement estimated by binding isotherms of hydrates[J]. Journal of Advanced Concrete Technology, 2005, 3(1): 77-84. [29] WANG Y Y, SHUI Z H, GAO X, et al. Chloride binding capacity and phase modification of alumina compound blended cement paste under chloride attack[J]. Cement and Concrete Composites, 2020, 108: 103537. [30] YANG L, CHEN M X, LU Z Y, et al. Synthesis of CaFeAl layered double hydroxides 2D nanosheets and the adsorption behaviour of chloride in simulated marine concrete[J]. Cement and Concrete Composites, 2020, 114: 103817. [31] 钱觉时, 吴传明, 王 智. 粉煤灰的矿物组成(上)[J]. 粉煤灰综合利用, 2001, 14(1): 26-31. QIAN J S, WU C M, WANG Z. Mineral composition of fly ash (Ⅰ)[J]. Fly Ash Comprehensive Utilization, 2001, 14(1): 26-31 (in Chinese). [32] 厉 超. 矿渣、高/低钙粉煤灰玻璃体及其水化特性研究[D]. 北京: 清华大学, 2011. LI C. Research on the glass phase of slag, high calcium fly ash and low calcium fly ash and their hydration mechanism[D]. Beijing: Tsinghua University, 2011 (in Chinese). [33] QIAO C Y, SURANENI P, NATHALENE WEI YING T, et al. Chloride binding of cement pastes with fly ash exposed to CaCl2 solutions at 5 and 23 ℃[J]. Cement and Concrete Composites, 2019, 97: 43-53. [34] 李 东, 朱月圆, 耿 健, 等. 矿物掺合料和CLDH对水泥基材料氯离子固化性能研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(3): 344-349. LI D, ZHU Y Y, GENG J, et al. A study on curing charateristics of chloride ions binding in cement based materials with mineral admixture and CLDH[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2019, 51(3): 344-349 (in Chinese). [35] TENG Y B, LIU S H, ZHANG Z C, et al. Effect of triethanolamine on the chloride binding capacity of cement paste with a high volume of fly ash[J]. Construction and Building Materials, 2022, 315: 125612. [36] 于 方, 杨海成, 范志宏, 等. 养护龄期和矿物掺合料对砂浆氯离子结合能力的影响[J]. 水运工程, 2019(1): 55-59+94. YU F, YANG H C, FAN Z H, et al. Effect of curing age and mineral admixture on chloride ion binding capacity of mortar[J]. Port & Waterway Engineering, 2019(1): 55-59+94 (in Chinese). [37] HU X, POON C S. Chloride-related steel corrosion initiation in cement paste prepared with the incorporation of blast-furnace slag[J]. Cement and Concrete Composites, 2022, 126: 104349. [38] LI W, YI L M, JIANG W, et al. Effects of ultrafine blast furnace slag on the microstructure and chloride transport in cementitious systems under cyclic drying-wetting conditions[J]. Applied Sciences, 2022, 12(8): 4064. [39] THOMAS M D A, BAMFORTH P B. Modelling chloride diffusion in concrete[J]. Cement and Concrete Research, 1999, 29(4): 487-495. [40] QU F L, LI W G, GUO Y P, et al. Chloride-binding capacity of cement-GGBFS-nanosilica composites under seawater chloride-rich environment[J]. Construction and Building Materials, 2022, 342: 127890. [41] 李 阳. 偏高岭土提高水泥性能及水化机理研究[D]. 武汉: 武汉理工大学, 2017. LI Y. Research on improving the performance of cement and hydration mechanism of metakaolin[D]. Wuhan: Wuhan University of Technology, 2017 (in Chinese). [42] BABAAHMADI A, MACHNER A, KUNTHER W, et al. Chloride binding in Portland composite cements containing metakaolin and silica fume[J]. Cement and Concrete Research, 2022, 161: 106924. [43] LI S C, JIN Z Q, YU Y. Chloride binding by calcined layered double hydroxides and alumina-rich cementitious materials in mortar mixed with seawater and sea sand[J]. Construction and Building Materials, 2021, 293: 123493. [44] GUO Y Q, ZHANG T S, DU J P, et al. The chloride binding capacity and stability of gap-graded blended cement with calcined hydrotalcite and metakaolin[J]. Journal of Building Engineering, 2022, 49: 104093. [45] GARCIA R, DE LA RUBIA M A, ENRIQUEZ E, et al. Chloride binding capacity of metakaolin and nanosilica supplementary pozzolanic cementitious materials in aqueous phase[J]. Construction and Building Materials, 2021, 298: 123903. [46] 黄政宇, 李 涛. 超高性能混凝土基体中氯离子结合特性的研究[J]. 铁道科学与工程学报, 2016, 13(10): 1912-1918. HUANG Z Y, LI T. Study of chloride binding property in ultra high performance concrete matrix[J]. Journal of Railway Science and Engineering, 2016, 13(10): 1912-1918 (in Chinese). [47] MA J, WANG H N, YU Z Q, et al. A systematic review on durability of calcium sulphoaluminate cement-based materials in chloride environment[J]. Journal of Sustainable Cement-Based Materials, 2022: 1-12. [48] 赵 军, 王卫仑, 蔡高创. 内掺型氯离子在硫铝酸盐水泥中结合特性研究[J]. 混凝土, 2010(3): 23-25. ZHAO J, WANG W L, CAI G C. Study on inner mixed type chloride bonding regulation in sulphoaluminate cement[J]. Concrete, 2010(3): 23-25 (in Chinese). [49] LOTHENBACH B, LE SAOUT G, GALLUCCI E, et al. Influence of limestone on the hydration of Portland cements[J]. Cement and Concrete Research, 2008, 38(6): 848-860. [50] QIAN R S, ZHANG Y S, LIU C, et al. Effects of supplementary cementitious materials on pore-solution chemistry of blended cements[J]. Journal of Sustainable Cement-Based Materials, 2022, 11(6): 389-407. [51] ANGST U M. Challenges and opportunities in corrosion of steel in concrete[J].Materials and Structures, 2018, 51(1): 1-20. [52] KALOGRIDIS D, KOSTOGLOUDIS G C, FTIKOS C, et al. A quantitative study of the influence of non-expansive sulfoaluminate cement on the corrosion of steel reinforcement[J]. Cement and Concrete Research, 2000, 30(11): 1731-1740. [53] ANDAC M, GLASSER F P. Pore solution composition of calcium sulfoaluminate cement[J]. Advances in Cement Research, 1999, 11(1): 23-26. [54] WINNEFELD F, LOTHENBACH B. Hydration of calcium sulfoaluminate cements—experimental findings and thermodynamic modelling[J]. Cement and Concrete Research, 2010, 40(8): 1239-1247. [55] TANG S W, ZHU H G, LI Z J, et al. Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age[J]. Construction and Building Materials, 2015, 75: 11-18. [56] JANOTKA I, KRAJČAI L. An experimental study on the upgrade of sulfoaluminate—belite cement systems by blending with Portland cement[J]. Advances in Cement Research, 1999, 11(1): 35-41. [57] SEREEWATTHANAWUT I, PANSUK W, PHEINSUSOM P, et al. Chloride-induced corrosion of a galvanized steel-embedded calcium sulfoaluminate stucco system[J]. Journal of Building Engineering, 2021, 44: 103376. [58] 王凌波, 詹树林, 唐旭东, 等. 钢筋在硫铝酸盐水泥砂浆中的腐蚀行为研究[J]. 硅酸盐通报, 2020, 39(2): 337-343. WANG L B, ZHAN S L, TANG X D, et al. Corrosion behavior of steel in calcium sulfoaluminate cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 337-343 (in Chinese). [59] 郑连丛, 叶正茂, 朱元娜, 等. 氯盐环境中硫铝酸盐水泥的耐侵蚀行为[J]. 济南大学学报(自然科学版), 2011, 25(2): 111-114. ZHENG L C, YE Z M, ZHU Y N, et al. Resistance to chloride attack of sulphoaluminate cement[J]. Journal of University of Jinan (Science and Technology), 2011, 25(2): 111-114 (in Chinese). [60] 赵 军, 蔡高创, 高丹盈. 硫铝酸盐水泥混凝土抗氯离子侵蚀机理分析[J]. 建筑材料学报, 2011, 14(3): 357-361. ZHAO J, CAI G C, GAO D Y. Analysis of mechanism of resistance to chloride ion erosion of sulphoaluminate cement concrete[J]. Journal of Building Materials, 2011, 14(3): 357-361 (in Chinese). [61] PAUL G, BOCCALERI E, BUZZI L, et al. Friedel’s salt formation in sulfoaluminate cements: a combined XRD and 27Al MAS NMR study[J]. Cement and Concrete Research, 2015, 67: 93-102. [62] JEN G, STOMPINIS N, JONES R. Chloride ingress in a belite-calcium sulfoaluminate cement matrix[J]. Cement and Concrete Research, 2017, 98: 130-135. [63] TANG S W, YUAN J H, CAI R J, et al. Continuous monitoring for leaching of calcium sulfoaluminate cement pastes incorporated with ZnCl2 under the attacks of chloride and sulfate[J]. Chemosphere, 2019, 223: 91-98. [64] PANG F J, WEI C B, ZHANG Z Y, et al. The migration and immobilization for heavy metal chromium ions in the hydration products of calcium sulfoaluminate cement and their leaching behavior[J]. Journal of Cleaner Production, 2022, 365: 132778. [65] LI G X, BAI Z H, ZHANG G, et al. Study on properties and degradation mechanism of calcium sulphoaluminate cement-ordinary Portland cement binary repair material under seawater erosion[J]. Case Studies in Construction Materials, 2022, 17: e01440. [66] ZHANG J J, YE C B, TAN H B, et al. Potential application of Portland cement-sulfoaluminate cement system in precast concrete cured under ambient temperature[J]. Construction and Building Materials, 2020, 251: 118869. [67] BERTOLA F, GASTALDI D, IRICO S, et al. Behavior of blends of CSA and Portland cements in high chloride environment[J]. Construction and Building Materials, 2020, 262: 120852. [68] GUIRADO F, GALÍ S, CHINCHÓN J S. Thermal decomposition of hydrated alumina cement (CAH10)[J]. Cement and Concrete Research, 1998, 28(3): 381-390. [69] SON H M, PARK S M, JANG J G, et al. Effect of nano-silica on hydration and conversion of calcium aluminate cement[J]. Construction and Building Materials, 2018, 169: 819-825. [70] MIDGLEY H G. Quantitative determination of phases in high alumina cement clinkers by X-ray diffraction[J]. Cement and Concrete Research, 1976, 6(2): 217-223. [71] MOSTAFA N Y, ZAKI Z I, ABD ELKADER O H. Chemical activation of calcium aluminate cement composites cured at elevated temperature[J]. Cement and Concrete Composites, 2012, 34(10): 1187-1193. [72] KIRCA Ö, ÖZGÜR YAMAN ,TOKYAY M. Compressive strength development of calcium aluminate cement-GGBFS blends[J]. Cement and Concrete Composites, 2013, 35(1): 163-170. [73] ZHU Z Y, WANG Z P, XU L L, et al. Phase-dependent study of chloride binding capacity and its relation to the properties of CAC[J]. Journal of Building Engineering, 2022, 46: 103718. [74] WANG J A, WANG S D, HENKELMAN G. Improved chloride binding stability for hydration products of calcium aluminates by phosphorus modification[J]. Journal of the American Ceramic Society, 2022, 105(7): 4870-4882. [75] JIN S H, YANG H J, HWANG J P, et al. Corrosion behaviour of steel in CAC-mixed concrete containing different concentrations of chloride[J]. Construction and Building Materials, 2016, 110: 227-234. [76] XU L L, WANG P M, ZHANG G F. Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures[J]. Construction and Building Materials, 2012, 31: 347-352. [77] LI G X, ZHANG A, SONG Z P, et al. Study on the resistance to seawater corrosion of the cementitious systems containing ordinary Portland cement or/and calcium aluminate cement[J]. Construction and Building Materials, 2017, 157: 852-859. [78] WU J, LI H M, WANG Z, et al. Transport model of chloride ions in concrete under loads and drying-wetting cycles[J]. Construction and Building Materials, 2016, 112: 733-738. [79] SCHNEIDER U, NÄGELE E, DUMAT F. Stress corrosion initiated cracking of concrete[J]. Cement and Concrete Research, 1986, 16(4): 535-544. [80] KIM D H, SHIMURA K, HORIGUCHI T. Effect of tensile loading on chloride penetration of concrete mixed with granulated blast furnace slag[J]. Journal of Advanced Concrete Technology, 2010, 8(1): 27-34. [81] CHEN F, GAO J M, QI B, et al. Degradation progress of concrete subject to combined sulfate-chloride attack under drying-wetting cycles and flexural loading[J]. Construction and Building Materials, 2017, 151: 164-171. [82] LI D W, LI L Y, LI P, et al. Modelling of convection, diffusion and binding of chlorides in concrete during wetting-drying cycles[J]. Marine Structures, 2022, 84: 103240. [83] 张立明, 余红发, 何忠茂. 干湿循环和粉煤灰掺量对混凝土氯离子结合能力的影响[J]. 混凝土, 2013(1): 66-68+72. ZHANG L M, YU H F, HE Z M. Influence of fly ash admixture and wet-dry times on chloride binding capacity of concrete[J]. Concrete, 2013(1): 66-68+72 (in Chinese). [84] GUERRERO A, GOÑI S, ALLEGRO V R. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 903-908. [85] 勾密峰, 管学茂, 张海波. 单硫型水化硫铝酸钙对氯离子的固化作用[J]. 建筑材料学报, 2012, 15(6): 863-866. GOU M F, GUAN X M, ZHANG H B. Chloride binding in monosulfoaluminate hydrate[J]. Journal of Building Materials, 2012, 15(6): 863-866 (in Chinese). [86] JIANG W Q, SHEN X H, HONG S X, et al. Binding capacity and diffusivity of concrete subjected to freeze-thaw and chloride attack: a numerical study[J]. Ocean Engineering, 2019, 186: 106093. [87] TRITTHART J. Chloride binding in cement II. The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding[J]. Cement and Concrete Research, 1989, 19(5): 683-691. [88] SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate[J]. Cement and Concrete Research, 1996, 26(5): 717-727. [89] YUAN Q, SHI C J, DE SCHUTTER G, et al. Chloride binding of cement-based materials subjected to external chloride environment: a review[J]. Construction and Building Materials, 2009, 23(1): 1-13. [90] HEMSTAD P, MACHNER A, DE WEERDT K. The effect of artificial leaching with HCl on chloride binding in ordinary Portland cement paste[J]. Cement and Concrete Research, 2020, 130: 105976. [91] SURYAVANSHI A K, NARAYAN SWAMY R. Stability of Friedel’s salt in carbonated concrete structural elements[J]. Cement and Concrete Research, 1996, 26(5): 729-741. [92] ARYA C, BUENFELD N R, NEWMAN J B. Factors influencing chloride-binding in concrete[J]. Cement and Concrete Research, 1990, 20(2): 291-300. [93] CHEN P, MA B G, TAN H B, et al. Utilization of barium slag to improve chloride-binding ability of cement-based material[J]. Journal of Cleaner Production, 2021, 283: 124612. [94] 勾密峰, 管学茂, 孙 倩. 水化硅酸钙对氯离子的吸附[J]. 建筑材料学报, 2015, 18(3): 363-368. GOU M F, GUAN X M, SUN Q. Adsorption of chloride ion by calcium silicate hydrate[J]. Journal of Building Materials, 2015, 18(3): 363-368 (in Chinese). |
[1] | 汪智勇, 吴升国, 齐冬有, 郑静, 张钰, 王小可. 铁相对铁铝酸盐水泥熟料形成的影响[J]. 硅酸盐通报, 2023, 42(5): 1561-1568. |
[2] | 杨孟君, 曹义冬, 林常, 徐树英, 潘莉莎. 低钙粉煤灰地聚物的流变性能、凝结时间和抗压强度[J]. 硅酸盐通报, 2023, 42(5): 1721-1730. |
[3] | 陈尚鸿, 林佳福, 杨政险, 张勇, 熊晓立. 钢渣-矿渣透水混凝土力学性能的试验研究[J]. 硅酸盐通报, 2023, 42(5): 1767-1777. |
[4] | 姚凯, 李青, 王鹏淮, 陈平, 李俊潼, 明阳. 硬脂酸钠对碱激发矿渣-赤泥胶凝材料吸水速率的影响[J]. 硅酸盐通报, 2023, 42(5): 1778-1784. |
[5] | 王宁, 陈宇昕, 徐文盛, 安胜利, 彭军, 彭继华. 氨氮废水处理用新型沸石化陶粒的制备[J]. 硅酸盐通报, 2023, 42(5): 1864-1874. |
[6] | 范小春, 汪阳, 高旭, 张宇, 袁波. 亚硝酸钙与富铝矿相协同调控碱矿渣氯离子固化能力研究[J]. 硅酸盐通报, 2023, 42(4): 1148-1155. |
[7] | 安赛, 王宝民, 陈文秀, 赵庆新. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. |
[8] | 刘扬, 陈湘, 王柏文, 鲁乃唯, 肖欣欣, 罗冬. 碱激发粉煤灰-矿渣-电石渣基地聚物的制备及强度机理[J]. 硅酸盐通报, 2023, 42(4): 1353-1362. |
[9] | 陈富文, 桑绍柏, 万卓夫, 马宇洲, 廖宁. 粉煤灰和烧成温度对矾土基轻量莫来石材料结构及性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1488-1495. |
[10] | 施晓晨, 水中和, 李浩源, 肖勋光, 孙涛, 王雷冲. 紫外预处理对硅酸盐水泥浆体早期碳化性能的影响[J]. 硅酸盐通报, 2023, 42(3): 786-792. |
[11] | 向杰, 黎建宏, 王桂芳, 薛清远, 何建桥, 刘书均, 胡青艳. 从粉煤灰中提取白炭黑及其硅烷偶联剂改性工艺研究[J]. 硅酸盐通报, 2023, 42(3): 989-1000. |
[12] | 沈鑫, 郭随华, 李文伟, 陆超, 张坤悦, 王敏, 文寨军. 低热硅酸盐水泥水化及性能研究现状[J]. 硅酸盐通报, 2023, 42(2): 383-392. |
[13] | 李威, 刘豫, 李慧, 于欣欣, 朱建平. 新拌石灰石粉-偏高岭土-水泥系统流变特性研究[J]. 硅酸盐通报, 2023, 42(2): 411-419. |
[14] | 周晓青, 易阳, 汪峻峰, 鲁刘磊, 黎晓丽, 马良伟, 宋晓建, 兰小波. 新疆大石峡水利枢纽混凝土碱-硅酸反应抑制研究[J]. 硅酸盐通报, 2023, 42(2): 448-453. |
[15] | 李建林, 张智强, 余林文. 低密度碱矿渣发泡混凝土的制备及基本力学性能[J]. 硅酸盐通报, 2023, 42(1): 76-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||