[1] TALAAT A, EMAD A, TAREK A, et al. Factors affecting the results of concrete compression testing: a review[J]. Ain Shams Engineering Journal, 2021, 12(1): 205-221. [2] ZABIHI N, EREN O. Compressive strength conversion factors of concrete as affected by specimen shape and size[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7(20): 4251-4257. [3] SIM J I, YANG K H, KIM H Y, et al. Size and shape effects on compressive strength of lightweight concrete[J]. Construction and Building Materials, 2013, 38: 854-864. [4] 苏 捷, 史才军, 黄泽恩, 等. 粗骨料含量对超高性能混凝土抗压强度尺寸效应的影响[J]. 硅酸盐学报, 2021, 49(11): 2416-2422. SU J, SHI C J, HUANG Z E, et al. Scale effect on cubic compressive strength on ultra-high performance concrete containing coarse aggregate[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2416-2422 (in Chinese). [5] WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(3): 293-297. [6] BAANT Z P. Size effect[J]. International Journal of Solids and Structures, 2000, 37(1/2): 69-80. [7] 张 颖, 刘昌永, 王玉银, 等. 基于随机骨料模型的混凝土抗压强度尺寸效应研究[J]. 建筑结构学报, 2017, 38(s1): 493-501. ZHANG Y, LIU C Y, WANG Y Y, et al. Mesoscale modeling based numerical study on size effect of concrete compressive strength[J]. Journal of Building Structures, 2017, 38(s1): 493-501 (in Chinese). [8] 魏培勇, 张社荣, 王 超, 等. 基于细观模拟的碾压混凝土尺寸效应律研究[J]. 振动与冲击, 2022, 41(7): 250-257+267. WEI P Y, ZHANG S R, WANG C, et al. Size effect law of RCC based on mesoscopic simulation[J]. Journal of Vibration and Shock, 2022, 41(7): 250-257+267 (in Chinese). [9] 何 吉, 徐小雪. 全级配混凝土抗压强度尺寸效应及影响因素的统计分析[J]. 水利与建筑工程学报, 2018, 16(4): 89-93. HE J, XU X X. Statistical analysis on size effect and its factors of full-grade concrete compressive strength[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(4): 89-93 (in Chinese). [10] 王术全. 深度学习PINN算法在一类半导体模型上的应用[D]. 济南: 山东大学, 2021. WANG S Q. Application of deep learning PINN algorithm to a class of semiconductor model problems[D]. Jinan: Shandong University, 2021 (in Chinese). [11] BEN CHAABENE W, FLAH M, NEHDI M L. Machine learning prediction of mechanical properties of concrete: critical review[J]. Construction and Building Materials, 2020, 260: 119889. [12] 唐腾飞, 黄耀英, 练 迪, 等. 混凝土棱柱体试件抗压强度尺寸效应探讨[J]. 人民黄河, 2017, 39(12): 142-145. TANG T F, HUANG Y Y, LIAN D, et al. Study on size effect on compressive strength of concrete prism specimen[J]. Yellow River, 2017, 39(12): 142-145 (in Chinese). [13] YANG Q W, DU S. Prediction of concrete cubic compressive strength using ANN based size effect model[J]. Cmc-Computers Materials & Continua, 2015, 47: 217-236. [14] 金 浏, 赵 瑞, 杜修力. 混凝土抗压强度尺寸效应的神经网络预测模型[J]. 北京工业大学学报, 2021, 47(3): 260-268. JIN L, ZHAO R, DU X L. Neural network prediction model of concrete compressive strength size effect[J]. Journal of Beijing University of Technology, 2021, 47(3): 260-268 (in Chinese). [15] 田 睿, 孟海东, 陈世江, 等. 基于深度神经网络的岩爆烈度分级预测[J]. 煤炭学报, 2020, 45(s1): 191-201. TIAN R, MENG H D, CHEN S J, et al. Prediction of intensity classification of rockburst based on deep neural network[J]. Journal of China Coal Society, 2020, 45(s1): 191-201 (in Chinese). [16] SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2. December 3 - 6, 2012, Lake Tahoe, Nevada. New York: ACM, 2012: 2951-2959. [17] 惠弘毅, 李宗利, 杨 华, 等. 不同强度等级混凝土尺寸效应试验研究[J]. 混凝土, 2015(7): 31-34. XI H Y, LI Z L, YANG H, et al. Experimental study on impact of strength grade on size effect of concrete strength[J]. Concrete, 2015(7): 31-34 (in Chinese). [18] TEKİAIN İAI. An in-situ study on the specimen size effects on compressive strength for different strength concretes[J]. Journal of Cement Based Composites, 2021, 1(3): 7-10. [19] ONER A, AKYUZ S. An experimental study on optimum usage of GGBS for the compressive strength of concrete[J]. Cement and Concrete Composites, 2007, 29(6): 505-514. [20] GYURKÓ Z, NEMES R. Specimen size and shape effect on the compressive strength of normal strength concrete[J]. Periodica Polytechnica Civil Engineering, 2020, 64(1): 276-286. [21] ZHAI Y C. Experimental study on the size effect on the probability distribution of concrete compressive strength[J]. Advances in Civil Engineering, 2022, 2022: 1-10. [22] MUCIACCIA G, ROSATI G, DI LUZIO G. Compressive failure and size effect in plain concrete cylindrical specimens[J]. Construction and Building Materials, 2017, 137: 185-194. [23] 董莉莉. 不同强度等级混凝土抗压强度尺寸效应研究[J]. 市政技术, 2015, 33(6): 187-190+193. DONG L L. On size effect of concrete compressive strength under different strength grades[J]. Municipal Engineering Technology, 2015, 33(6): 187-190+193 (in Chinese). [24] 赵 壮, 冯 博, 刘 刚, 等. 不同形状尺寸对混凝土试件抗压强度的关系[J]. 北方建筑, 2016, 1(2): 39-41+79. ZHAO Z, FENG B, LIU G, et al. Relationship of compressive strength of concrete specimens with various shapes and sizes[J]. Northern Architecture, 2016, 1(2): 39-41+79 (in Chinese). [25] 张明辉. 掺粉煤灰和矿渣粉活性粉末混凝土基本力学性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. ZHANG M H. Experimental study on basic mechanical properties of reactive powder concrete mixed with fly ash and slag powder[D]. Harbin: Harbin Institute of Technology, 2006 (in Chinese). [26] 张 宇, 金祖权, 吴运超. 掺合料、钢纤维及试件尺寸对水泥基材料强度影响[J]. 河北工业大学学报, 2014, 43(6): 105-108. ZHANG Y, JIN Z Q, WU Y C. Influence of mineral admixtures, steel fiber and specimen size effect on strength of cement-based materials[J]. Journal of Hebei University of Technology, 2014, 43(6): 105-108 (in Chinese). [27] CHIDIAC S E, MOUTASSEM F, MAHMOODZADEH F. Compressive strength model for concrete[J]. Magazine of Concrete Research, 2013, 65(9): 557-572. [28] DAY R L, HAQUE M N. Correlation between strength of small- and standard-size concrete cylinders[J]. ACI Materials Journal, 1993, 90(5): 452-462. [29] LEE B J, KEE S H, OH T, et al. Effect of cylinder size on the modulus of elasticity and compressive strength of concrete from static and dynamic tests[J]. Advances in Materials Science and Engineering, 2015, 2015: 1-12. [30] LAM L, WONG Y L, POON C S. Effect of fly ash and silica fume on compressive and fracture behaviors of concrete[J]. Cement and Concrete Research, 1998, 28(2): 271-283. [31] BHARATKUMAR B H, RAGHUPRASAD B K, RAMACHANDRAMURTHY D S, et al. Effect of fly ash and slag on the fracture characteristics of high performance concrete[J]. Materials and Structures, 2005, 38(1): 63-72. [32] 叶 生. 尺寸效应对混凝土受压力学性能影响试验研究[J]. 盐城工学院学报(自然科学版), 2019, 32(2): 74-78. YE S. Experimental study of size effect on compressive mechanical properties of concrete[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2019, 32(2): 74-78 (in Chinese). [33] 冷发光, 邢 锋, 冯乃谦, 等. 粉煤灰高性能混凝土试件强度尺寸效应研究[J]. 混凝土, 2000(12): 18-19+54. LENG F G, XING F, FENG N Q, et al. The size effects of high-performance-concrete incorporated with fly ash[J]. Concrete, 2000(12): 18-19+54 (in Chinese). [34] 何淅淅, 郑学成, 林社勇. 粉煤灰混凝土强度统计特性的试验研究[J]. 土木工程学报, 2011, 44(s1): 59-65. HE X X, ZHENG X C, LIN S Y. The experimental studies on the statistical characteristics of fly ash concrete strength[J]. China Civil Engineering Journal, 2011, 44(s1): 59-65 (in Chinese). [35] KUMAR S, BARAI S V. Effect of loading condition, specimen geometry, size-effect and softening function on double-K fracture parameters of concrete[J]. Sadhana, 2012, 37(1): 3-15. [36] CHE Y, BAN S L, CUI J Y, et al. Effect of specimen shape and size on compressive strength of concrete[J]. Advanced Materials Research, 2010, 163/164/165/166/167: 1375-1379. [37] YI S T, YANG E I, CHOI J C. Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete[J]. Nuclear Engineering and Design, 2006, 236(2): 115-127. [38] 刘增晨, 蒋 利, 成莞莞, 等. 高强混凝土抗压抗拉强度的尺寸效应[J]. 科学技术与工程, 2015, 15(30): 209-213. LIU Z C, JIANG L, CHENG W W, et al. The dimensional effect of compressive strength and splitting tensile strength of high strength concrete[J]. Science Technology and Engineering, 2015, 15(30): 209-213 (in Chinese). [39] 钱觉时, 杨再富, 黄煜镔, 等. 高强混凝土强度尺寸效应的试验研究[J]. 华中科技大学学报(城市科学版), 2004, 21(1): 1-4. QIAN J S, YANG Z F, HUANG Y B, et al. Experimental study of the size effect on the strength of high-strength concrete[J]. Journal of Wuhan Urban Construction Institute, 2004, 21(1): 1-4 (in Chinese). [40] DURÁN-HERRERA A, JUÁREZ C A, VALDEZ P, et al. Evaluation of sustainable high-volume fly ash concretes[J]. Cement and Concrete Composites, 2011, 33(1): 39-45. [41] WATANABE K, NIWA J, YOKOTA H, et al. Experimental study on stress-strain curve of concrete considering localized failure in compression[J]. Journal of Advanced Concrete Technology, 2004, 2(3): 395-407. [42] SIM J I, YANG K H, JEON J K. Influence of aggregate size on the compressive size effect according to different concrete types[J]. Construction and Building Materials, 2013, 44: 716-725. [43] 杨 钻. 混凝土尺寸效应的细观数值分析及试验研究[D]. 长沙: 湖南大学, 2009. YANG Z. Mesoscopic numerical simulation and test study on concrete’s size effect[D]. Changsha: Hunan University, 2009 (in Chinese). [44] 周 红. 混凝土强度尺寸效应的实验研究[D]. 大连: 大连理工大学, 2010. ZHOU H. Experimental study on size effect on concrete strength[D]. Dalian: Dalian University of Technology, 2010 (in Chinese). [45] BILIM C, ATI C D, TANYILDIZI H, et al. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network[J]. Advances in Engineering Software, 2009, 40(5): 334-340. [46] HAN S H, KIM J K, PARK Y D. Prediction of compressive strength of fly ash concrete by new apparent activation energy function[J]. Cement and Concrete Research, 2003, 33(7): 965-971. [47] DEL VISO J R, CARMONA J R, RUIZ G. Shape and size effects on the compressive strength of high-strength concrete[J]. Cement and Concrete Research, 2008, 38(3): 386-395. [48] KARIHALOO B L, XIAO Q Z. Size effect in the strength of concrete structures[J]. Sadhana, 2002, 27(4): 449-459. [49] 高丹盈, 王勤学, 李翔宇. 龄期和尺寸对纤维矿渣微粉混凝土抗压强度的影响[J]. 工业建筑, 2011, 41(s1): 739-742+767. GAO D Y, WANG Q X, LI X Y. Influence of ages and dimension on the compressive strength of fiber reinforced slag concrete[J]. Industrial Construction, 2011, 41(s1): 739-742+767 (in Chinese). [50] 苏 捷, 方 志. 普通混凝土与高强混凝土抗压强度的尺寸效应[J]. 建筑材料学报, 2013, 16(6): 1078-1081+1086. SU J, FANG Z. Scale effect on cubic compressive strength of ordinary concrete and high-strength concrete[J]. Journal of Building Materials, 2013, 16(6): 1078-1081+1086 (in Chinese). [51] 张帮强. 三级配矿渣混凝土力学性能尺寸效应试验研究[D]. 杨凌: 西北农林科技大学, 2016. ZHANG B Q. Research on the size effect of three-graded aggregate concrete behavior in mechanics performance[D]. Yangling: Northwest A & F University, 2016 (in Chinese). [52] AN M Z, ZHANG L J, YI Q X. Size effect on compressive strength of reactive powder concrete[J]. Journal of China University of Mining and Technology, 2008, 18(2): 279-282. [53] TOKYAY M, ÖZDEMIR M. Specimen shape and size effect on the compressive strength of higher strength concrete[J]. Cement and Concrete Research, 1997, 27(8): 1281-1289. [54] 李嘉进. 试件尺寸和骨料粒径对混凝土强度的影响[J]. 水电站设计, 1991, 7(3): 20-27. LI J J. Effect of specimen size and aggregate diameter on concrete strength[J]. Design of Hydroelectric Power Station, 1991, 7(3): 20-27 (in Chinese). [55] YAZICI, İNAN SEZER G. The effect of cylindrical specimen size on the compressive strength of concrete[J]. Building and Environment, 2007, 42(6): 2417-2420. [56] EJIOGU I K. The effect of the dimensions of concrete samples on the physio- mechanical properties of normal concrete blocks[J]. 2018, 5: 34-43. [57] 朱尔玉, 杨 威, 王建海, 等. 不同形状尺寸C20混凝土试件抗压强度的关系[J]. 北京交通大学学报, 2005, 29(1): 1-3+13. ZHU E Y, YANG W, WANG J H, et al. Relationship of compressive strength of specimens with various shapes and sizes for C20 MPa grade concrete[J]. Journal of Northern Jiaotong University, 2005, 29(1): 1-3+13 (in Chinese). [58] 杜修力, 金 浏, 李 冬. 混凝土与混凝土结构尺寸效应述评(Ⅰ): 材料层次[J]. 土木工程学报, 2017, 50(9): 28-45. DU X L, JIN L, LI D. A state-of-the-art review on the size effect of concretes and concrete structures(Ⅰ): concrete materials[J]. China Civil Engineering Journal, 2017, 50(9): 28-45 (in Chinese). [59] CARPINTERI A. Scaling laws and renormalization groups for strength and toughness of disordered materials[J]. International Journal of Solids and Structures, 1994, 31(3): 291-302. |