[1] DONG Q, HUANG C, DUAN G, et al. Facile synthesis and electrical performance of silica-coated copper powder for copper electronic pastes on low temperature co-fired ceramic[J]. Materials Letters, 2017, 186: 263-266. [2] MYEONG I K M, EUN B C, JONG-HYUN L. Improved sinter-bonding properties of silver-coated copper flake paste in air by the addition of sub-micrometer silver-coated copper particles[J]. Journal of Materials Research and Technology, 2020, 9(6): 16006-16017. [3] ZHANG B, HE F, CAO X H, et al. Effect of SiO2/BaO ratio on sintering behavior, crystallization behavior, and properties of SrO-BaO-B2O3-SiO2 glass-ceramics[J]. Ceramics International, 2021, 47(13): 19043-19051. [4] 陆广广, 宣天鹏. 电子浆料的研究进展与发展趋势[J]. 金属功能材料, 2008, 15(1): 48-52. LU G G, XUAN T P. Development tendency and research progress of the electronic paste[J]. Metallic Functional Materials, 2008, 15(1): 48-52 (in Chinese). [5] HLINA J, REBOUN J, JOHAN J, et al. Reliability of printed power resistor with thick-film copper terminals[J]. Microelectronic Engineering, 2019, 216: 111095. [6] LU Y C, Li Y X, CHEN D M, et al. High-performance electrical properties of La-based perovskite ceramics for the functional phase of thick film resistors[J]. Journal of Alloys and Compounds, 2021, 867: 159035. [7] STANIMIROVIC Z, JEVTIC M M, STANIMIROVIC I. Simultaneous mechanical and electrical straining of conventional thick-film resistors[J]. Microelectronics Reliability, 2008, 48(1): 59-67. [8] KIM J M, KIM Y K. Thin crystalline silicon solar cell bonded to sintered substrate with aluminum paste[J]. Solar Energy Materials and Solar Cells, 2005, 86(4): 577-584. [9] 靳学昌, 高 珺, 李 岩, 等. 玻璃粉体系对MLCC用铜电极浆料性能的影响[J]. 材料导报, 2021, 35(S2): 294-297+317. JIN X C, GAO J, LI Y, et al. Influence of glass powder systems on performance of copper-based electrode paste for MLCC[J]. Materials Reports, 2021, 35(S2): 294-297+317 (in Chinese). [10] 马小强, 朱晓云, 龙晋明, 等. 玻璃粉对铜导体浆料烧结膜性能的影响[J]. 材料研究学报, 2017, 31(6): 472-480. MA X Q, ZHU X Y, LONG J M, et al. Effect of glass powder on performance of copper conductor film prepared via sintering Cu-glass paste[J]. Chinese Journal of Materials Research, 2017, 31(6): 472-480 (in Chinese). [11] 魏明杰, 何 峰, 夏天昊, 等. Al2O3对ZnO-B2O3-SiO2铜浆料用玻璃粘结剂结构与性能的影响[J]. 武汉理工大学学报, 2021, 43(8): 20-26+50. WEI M J, HE F, XIA T H, et al. Effect of Al2O3 on the structure and properties of ZnO-B2O3-SiO2 sealing glass for copper paste[J]. Journal of Wuhan University of Technology, 2021, 43(8): 20-26+50 (in Chinese). [12] 甘卫平, 周 华, 张金玲. 无铅银浆烧结工艺与导电性能研究[J]. 电子元件与材料, 2010, 29(4): 65-69. GAN W P, ZHOU H, ZHANG J L. Investigation of sintering process and electrical conductivity of the lead-free Ag paste[J]. Electronic Components and Materials, 2010, 29(4): 65-69 (in Chinese). [13] SHIM S B, KIM D S, HWANG S, et al. Wetting and surface tension of bismate glass melt[J]. Thermochimica Acta, 2009, 496(1/2): 93-96. [14] HONG Y J, JUNG D S, KOO H Y. Characteristics of ZnO-B2O3-SiO2-CaO glass frits prepared by spray pyrolysis as inorganic binder for Cu electrode[J]. Journal of Alloys and Compounds, 2011, 509(31): 8077-8081. [15] 马国超, 朱晓云, 裴占玲, 等. 玻璃体系对铜浆性能的影响[J]. 传感技术学报, 2014, 27(8): 1013-1016. MA G C, ZHU X Y, PEI Z L, et al. Effect of glass systems on the properties of copper paste[J]. Chinese Journal of Sensors and Actuators, 2014, 27(8): 1013-1016 (in Chinese). [16] 尚小东, 宋永生, 罗文忠, 等. X7R特性MLCC用低温烧结铜端电极浆料的研究[J]. 广东化工, 2017, 44(13): 321-323. SHANG X D, SONG Y S, LUO W Z, et al. Research of low-temperature sintering copper temination paste for X7R-MLCC[J]. Guangdong Chemical Industry, 2017, 44(13): 321-323 (in Chinese). [17] 唐 浩, 卢艺森, 李基森. Ni/Cu电极MLCC烧端工艺的研究[J]. 电子元件与材料, 2006, 25(11): 50-53. TANG H, LU Y S, LI J S. Study on firing process for Cu termination of Ni/Cu MLCC[J]. Electronic Components and Materials, 2006, 25(11): 50-53 (in Chinese). [18] 郑伟宏, 盛 丽, 周 颖, 等. ZnO对ZnO-B2O3-SiO2低熔点玻璃结构与性能的影响[J]. 硅酸盐通报, 2017, 36(4): 1143-1148. ZHENG W H, SHENG L, ZHOU Y, et al. Effect of ZnO on structure and properties of ZnO-B2O3-SiO2 low-melting glass[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1143-1148 (in Chinese). [19] REDDY C N, CHAKRADHAR R P S. Elastic properties and spectroscopic studies of fast ion conducting Li2OZnOB2O3 glass system[J]. Materials Research Bulletin, 2007, 42(7): 1337-1347. [20] AL-BARADI A M, ABDEL W E A, SHAABAN K S. Preparation and characteristics of B2O3-SiO2-Bi2O3-TiO2-Y2O3 glasses and glass-ceramics[J]. Silicon, 2022, 14(10): 5277-5287.[21] ARORA M, BACCARO S, SHARMA G, et al. Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2009, 267(5): 817-820. [22] YANO T, KUNIMINE N, SHIBATA S, et al. Structural investigation of sodium borate glasses and melts by Raman spectroscopy. II. Conversion between BO4 and BO2O-units at high temperature[J]. Journal of Non-Crystalline Solids, 2003, 321(3): 147-156. [23] PARKINSON B G, HOLLAND D, SMITH M E, et al. Quantitative measurement of Q3 species in silicate and borosilicate glasses using Raman spectroscopy[J]. Journal of Non-Crystalline Solids, 2008, 354(17): 1936-1942. [24] SALINIGOPAL M S, GOPAKUMAR N, ANJANA P S, et al. Structural, optical and dielectric properties of aluminoborosilicate glasses[J]. Journal of Electronic Materials, 2020, 49(1): 695-704. [25] 吴永全, 蒋国昌, 尤静林, 等. 硅酸盐熔体微结构单元的对称伸缩模的拉曼散射系数[J]. 物理学报, 2005, 54(2): 961-966. WU Y Q, JIANG G C, YOU J L, et al. Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts[J]. Acta Physica Sinica, 2005, 54(2): 961-966 (in Chinese). [26] WANG Z L, GAN L Q, HUANG W J. Structural recovery and optical properties stabilization of CeO2/TiO2-doped boroaluminosilicate glass under gamma irradiation[J]. Radiation Physics and Chemistry, 2018, 151: 133-140. [27] DHARA A, MISHRA R K, SHUKLA R, et al. A comparative study on the structural aspects of sodium borosilicate glasses and Barium borosilicate glasses: effect of Al2O3 addition[J]. Journal of Non-Crystalline Solids, 2016, 447: 283-289. [28] QIAN G J, NIKL M, BEI J F, et al. Temperature dependence of photoluminescence in ZnO-containing glasses[J]. Optical Materials, 2007, 30(1): 91-94. [29] NESBITT H W, BANCROFT G M, HENDERSON G S. Bridging, non-bridging and free (O2-) oxygen in Na2O-SiO2 glasses: an X-ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) study[J]. Journal of Non-Crystalline Solids, 2011, 357(1): 170-180. |