[1] 黄晓燕. 掺花岗岩石粉的管桩高强混凝土微结构和力学性能研究[J]. 硅酸盐通报, 2022, 41(1): 109-117. HUANG X Y. Microstructure and mechanical properties of pile high-strength concrete incorporating granite powder[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 109-117 (in Chinese). [2] 叶庆阳, 薛聪聪, 余 敏, 等. 超高性能混凝土配合比设计与抗压强度试验研究[J]. 工业建筑, 2020, 50(3): 124-130+141. YE Q Y, XUE C C, YU M, et al. Mix proportion design and compressive strength test of ultra-high performance concrete[J]. Industrial Construction, 2020, 50(3): 124-130+141 (in Chinese). [3] 戎志丹, 王亚利, 焦茂鹏, 等. 超高性能混凝土的冲击压缩性能及损伤演变规律[J]. 硅酸盐学报, 2021, 49(11): 2322-2330. RONG Z D, WANG Y L, JIAO M P, et al. Impact compressive performance and damage evolution of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2322-2330 (in Chinese). [4] 徐翔波, 于 泳, 金祖权, 等. 养护制度对超高性能混凝土微观结构和力学性能影响的研究综述[J]. 硅酸盐通报, 2021, 40(9): 2856-2870. XU X B, YU Y, JIN Z Q, et al. Review on effects of microstructure and mechanical properties of ultra-high performance concrete by curing regimes[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2856-2870 (in Chinese). [5] YAZC H, MERT Y Y, AYDIN S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes[J]. Construction and Building Materials, 2009, 23(3): 1223-1231. [6] 张贤哲. C80管桩混凝土力学性能的试验研究[D]. 西安: 西安建筑科技大学, 2014. ZHANG X Z. The study on the mechanical performance of pipe pile C80 concrete[D]. Xi'an: Xi'an University of Architecture and Technology, 2014 (in Chinese). [7] 邹小童, 吴其胜, 光鉴淼, 等. 钙硅比对水热合成镍矿渣加气混凝土性能的影响[J]. 材料导报, 2016, 30(10): 126-129+134. ZOU X T, WU Q S, GUANG J M, et al. Influence of calcium-silicon ratio on performance of hydrothermally synthesized nickel slag aerated concrete[J]. Materials Review, 2016, 30(10): 126-129+134 (in Chinese). [8] 郭 磊, 王泽坤, 郭利霞, 等. CaO增强复合胶凝材料的性能[J]. 材料研究学报, 2022, 36(4): 278-286. GUO L, WANG Z K, GUO L X, et al. Performance of CaO reinforced composite cementitious materials[J]. Chinese Journal of Materials Research, 2022, 36(4): 278-286 (in Chinese). [9] 史才军, 元 强. 水泥基材料测试分析方法[M]. 北京: 中国建筑工业出版社, 2018: 131-133. SHI C J, YUAN Q. Testing and analysis method of cement-based materials[M]. Beijing: China Construction Industry Press, 2018: 131-133 (in Chinese). [10] 韩 笑, 冯竟竟, 孙传珍, 等. 50 ℃养护下超细粉煤灰-水泥复合胶凝材料的性能研究[J]. 建筑材料学报, 2021, 24(3): 473-482. HAN X, FENG J J, SUN C Z, et al. Research on properties of ultrafine fly ash and cement cementitious materials under curing at 50 ℃[J]. Journal of Building Materials, 2021, 24(3): 473-482 (in Chinese). [11] 曹瑞林, 徐玲玲, 黄 蓓, 等. 压蒸工艺参数对粉煤灰-石灰体系水热反应产物形成的影响[J]. 南京工业大学学报(自然科学版), 2018, 40(1): 81-88. CAO R L, XU L L, HUANG B, et al. Effects of autoclaving conditions on the formation of hydrothermal reaction products in fly ash-lime system[J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(1): 81-88 (in Chinese). [12] 朱 赫, 黄方林, 张爱品, 等. 不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系[J/OL]. 复合材料学报, 2022, 40: 1-11 (2022-11-25) [2022-11-30]. https://doi.org/10.13801/j.cnki.fhclxb.20221123.001. ZHU H, HUANG F L, ZHANG A P, et al. Uniaxial tensile test and constitutive relation of modified polyurethane concrete at different temperatures[J/OL]. Journal of Composite Materials, 2022, 40: 1-11 (2022-11-25) [2022-11-30]. https://doi.org/10.13801/j.cnki.fhclxb.20221123.001 (in Chinese). [13] 李 黎, 委玉杰, 李宗利, 等. 基于纤维增强指数的碱激发砂浆物理力学性能[J]. 硅酸盐学报, 2022, 50(8): 2212-2220. LI L, WEI Y J, LI Z L, et al. Properties of alkali activated mortar fresh and hardened properties based on fiber reinforced index[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2212-2220 (in Chinese). [14] 李 远. 水泥基材料早期水化过程与微观结构研究[D]. 武汉: 武汉理工大学, 2012. LI Y. Investigation on the early hydration and microstructure of cement-based materials[D]. Wuhan: Wuhan University of Technology, 2012 (in Chinese). [15] 张云升, 孙 伟, 郑克仁, 等. 水泥-粉煤灰浆体的水化反应进程[J]. 东南大学学报(自然科学版), 2006, 36(1): 118-123. ZHANG Y S, SUN W, ZHENG K R, et al. Hydration process of Portland cement-fly ash pastes[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(1): 118-123 (in Chinese). [16] 徐福卫, 田 斌, 徐 港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 122-128. XU F W, TIAN B, XU G. Influence analysis of interface transition zone thickness on the damage performance of recycled concrete[J]. Materials Reports, 2022, 36(4): 122-128 (in Chinese). [17] 刘 新, 冯 攀, 沈叙言, 等. 水泥水化产物: 水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167. LIU X, FENG P, SHEN X Y, et al. Advances in the understanding of cement hydrate: calcium silicate hydrate (C-S-H)[J]. Materials Reports, 2021, 35(9): 9157-9167 (in Chinese). [18] HU Z L, WYRZYKOWSKI M, GRIFFA M, et al. Young's modulus and creep of calcium-silicate-hydrate compacts measured by microindentation[J]. Cement and Concrete Research, 2020, 134: 106104. [19] 黄 燕, 胡 翔, 史才军, 等. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 106-117. HUANG Y, HU X, SHI C J, et al. Review on the formation and improvement of interfacial transition zone between cement paste and aggregate in concrete[J]. Materials Reports, 2023, 37(1): 106-117 (in Chinese). [20] 刘加平, 汤金辉, 韩方玉. 现代混凝土增韧防裂原理及应用[J]. 土木工程学报, 2021, 54(10): 47-54+63. LIU J P, TANG J H, HAN F Y. Toughening and crack prevention of modern concrete: mechanisms and applications[J]. China Civil Engineering Journal, 2021, 54(10): 47-54+63 (in Chinese). [21] LIU Z Y, BU L K, WANG Z X, et al. Durability and microstructure of steam cured and autoclaved PHC pipe piles[J]. Construction and Building Materials, 2019, 209: 679-689. [22] 张高展, 葛竞成, 张春晓, 等. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15): 15125-15133. ZHANG G Z, GE J C, ZHANG C X, et al. Review on the microstructure formation mechanism in concrete material under different curing regimes[J]. Materials Reports, 2021, 35(15): 15125-15133 (in Chinese). |