[1] 邱灿星, 杜修力. 自复位结构的研究进展和应用现状[J]. 土木工程学报, 2021, 54(11): 11-26. QIU C X, DU X L. A state-of-the-art review on the research and application of self-centering structures[J]. China Civil Engineering Journal, 2021, 54(11): 11-26 (in Chinese). [2] OLIVEIRA J P, MIRANDA R M, BRAZ FERNANDES F M. Welding and joining of NiTi shape memory alloys: a review[J]. Progress in Materials Science, 2017, 88: 412-466. [3] 吕西林, 武大洋, 周 颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40(2): 1-15. LU X L, WU D Y, ZHOU Y. State-of-the-art of earthquake resilient structures[J]. Journal of Building Structures, 2019, 40(2): 1-15 (in Chinese). [4] ELBAHY Y I, YOUSSEF M A. Flexural behaviour of superelastic shape memory alloy reinforced concrete beams during loading and unloading stages[J]. Engineering Structures, 2019, 181: 246-259. [5] MAO J Z, JIA D G, YANG Z L, et al. Seismic performance of concrete bridge piers reinforced with hybrid shape memory alloy (SMA) and steel bars[J]. Journal of Earthquake and Tsunami, 2020, 14(1): 2050001. [6] PARVIN A, RAAD J. Internal and external reinforcement of concrete members by use of shape memory alloy and fiber reinforced polymers under cyclic loading-a review[J]. Polymers, 2018, 10(4): 376. [7] ABDULRIDHA A, PALERMO D. Behaviour and modelling of hybrid SMA-steel reinforced concrete slender shear wall[J]. Engineering Structures, 2017, 147: 77-89. [8] 李传秀, 尹世平, 赵俊伶. 纤维编织网增强ECC的拉伸和弯曲性能[J]. 建筑材料学报, 2021, 24(4): 736-741. LI C X, YIN S P, ZHAO J L. Tensile and bending properties of textile reinforced ECC[J]. Journal of Building Materials, 2021, 24(4): 736-741 (in Chinese). [9] LI X P, LI M, SONG G B. Energy-dissipating and self-repairing SMA-ECC composite material system[J]. Smart Materials and Structures, 2015, 24(2): 025024. [10] SHERIF M M, KHAKIMOVA E M, OZBULUT O E, et al. Behavior of mortar beams with randomly distributed superelastic shape memory alloy fibers[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(4): 684-695. [11] DEHGHANI A, ASLANI F. Crack recovery and re-centring performance of cementitious composites with pseudoelastic shape memory alloy fibres[J]. Construction and Building Materials, 2021, 298: 123888. [12] DEHGHANI A, ASLANI F. The synergistic effects of shape memory alloy, steel, and carbon fibres with polyvinyl alcohol fibres in hybrid strain-hardening cementitious composites[J]. Construction and Building Materials, 2020, 252: 119061. [13] 陆振乾, 杨雅茹, 荀 勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(4): 177-183. LU Z Q, YANG Y R, XUN Y. Research review of fiber effect on properties of cement-based composite[J]. Journal of Textile Research, 2021, 42(4): 177-183 (in Chinese). [14] 王玉清, 刘 潇, 刘曙光, 等. 配合比对PVA-FRCC长期自生收缩性能的影响[J]. 建筑材料学报, 2022, 25(2): 150-157. WANG Y Q, LIU X, LIU S G, et al. Effect of mix proportion on the long-term autogenous shrinkage of PVA-FRCC[J]. Journal of Building Materials, 2022, 25(2): 150-157 (in Chinese). [15] 郝 彤, 汤 晨, 王永海, 等. 不同配合比参数对高延性纤维增强水泥基复合材料的性能影响[J]. 混凝土, 2020(7): 1-4. HAO T, TANG C, WANG Y H, et al. Effects of different mixing ratio parameters on the properties of high ductility fiber reinforced cementitious composites[J]. Concrete, 2020(7): 1-4 (in Chinese). [16] SHERIF M M, TANKS J, OZBULUT O E. Acoustic emission analysis of cyclically loaded superelastic shape memory alloy fiber reinforced mortar beams[J]. Cement and Concrete Research, 2017, 95: 178-187. [17] CHOI E, MOHAMMADZADEH B, KIM D, et al. A new experimental investigation into the effects of reinforcing mortar beams with superelastic SMA fibers on controlling and closing cracks[J]. Composites Part B: Engineering, 2018, 137: 140-152. [18] SHAJIL N, SRINIVASAN S M, SANTHANAM M. Self-centering of shape memory alloy fiber reinforced cement mortar members subjected to strong cyclic loading[J]. Materials and Structures, 2013, 46(4): 651-661. [19] NASSIRI-MONFARED A, BAGHANI M, ZAKERZADEH M R, et al. Developing a semi-analytical model for thermomechanical response of SMA laminated beams, considering SMA asymmetric behavior[J]. Meccanica, 2018, 53(4): 957-971. |