硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (3): 771-785.
所属专题: 水泥混凝土
• 水泥混凝土 • 下一篇
修建得1, 金祖权1,2, 李宁1,2, 侯保荣3
收稿日期:
2022-10-18
修订日期:
2022-12-22
出版日期:
2023-03-15
发布日期:
2023-03-31
通信作者:
金祖权,博士,教授。E-mail:jinzuquan@126.com
作者简介:
修建得(1998—),男,硕士研究生。主要从事混凝土耐久性的研究。E-mail:xjd17852021398@163.com
基金资助:
XIU Jiande1, JIN Zuquan1,2, LI Ning1,2, HOU Baorong3
Received:
2022-10-18
Revised:
2022-12-22
Online:
2023-03-15
Published:
2023-03-31
摘要: 氯离子传输是影响海洋工程钢筋混凝土服役寿命的关键因素。海洋大气中的氯离子可导致钢筋严重锈蚀,使混凝土结构的承载力降低和耐久性退化,严重威胁海洋工程钢筋混凝土结构的服役安全。但盐雾环境下的氯离子在混凝土中的传输机制极为复杂,呈多因素特征,需精确的盐雾试验来研究,并需要针对性更强的模型来描述其传输行为。鉴于此,本文对国内外盐雾环境下混凝土中氯离子传输的研究现状进行了系统综述,总结了海洋盐雾环境下探究混凝土中氯离子侵蚀的试验方法,讨论了影响氯离子传输的因素,归纳了氯离子传输模型,为海洋大气环境下钢筋混凝土结构的工程实践及科学研究提供借鉴和参考。
中图分类号:
修建得, 金祖权, 李宁, 侯保荣. 海洋盐雾环境下混凝土中氯离子传输研究进展[J]. 硅酸盐通报, 2023, 42(3): 771-785.
XIU Jiande, JIN Zuquan, LI Ning, HOU Baorong. Research Progress of Chloride Ion Transport in Concrete under Marine Salt Spray Environment[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 771-785.
[1] 秦 卿, 郑山锁, 丁 莎. 盐雾环境下一字型短肢RC剪力墙抗震性能试验[J]. 工程力学, 2020, 37(6): 79-91. QIN Q, ZHENG S S, DING S. Experimental study on aseismic behavior of short-pier RC shear walls in salt-fog environment[J]. Engineering Mechanics, 2020, 37(6): 79-91 (in Chinese). [2] CHEN L L, WANG Y Q, WANG Z F, et al. Diffusion resisting performance of concrete modified with sodium methyl silicate in saline soil area[J]. Construction and Building Materials, 2022, 350: 128767. [3] LI X G, ZHANG D W, LIU Z Y, et al. Materials science: share corrosion data[J]. Nature, 2015, 527(7579): 441-442. [4] HOU B R, LI X G, MA X M, et al. The cost of corrosion in China[J]. Npj Materials Degradation, 2017, 1: 4. [5] MEIRA G R, ANDRADE C, ALONSO C, et al. Durability of concrete structures in marine atmosphere zones-The use of chloride deposition rate on the wet candle as an environmental indicator[J]. Cement and Concrete Composites, 2010, 32(6): 427-435. [6] YU Y G, CHEN X J, GAO W, et al. Impact of atmospheric marine environment on cementitious materials[J]. Corrosion Science, 2019, 148: 366-378. [7] ZHAO L H, HE W P, WANG Y Q, et al. A comparative study of the corrosion behavior of 30CrMnSiNi2A in artificial seawater and salt spray environments[J]. Metals, 2022, 12(9): 1443. [8] 鲍玖文, 庄智杰, 张 鹏, 等. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095. BAO J W, ZHUANG Z J, ZHANG P, et al. Research progress of chloride corrosion resistance of concrete exposed to marine tidal environment based on similarity theory[J]. Materials Reports, 2021, 35(7): 7087-7095 (in Chinese). [9] 曹杰荣. 海洋环境下混凝土表层氯离子浓度分布及时变规律[D]. 青岛: 青岛理工大学, 2018: 1-6. CAO J R. Chloride ion concentration distribution and evolution in concrete surface exposed to marine environment[D]. Qingdao: Qingdao Tehcnology University, 2018: 1-6 (in Chinese). [10] 盛建松, 林 洲, 程 笛, 等. 掺加改性辅助胶凝材料混凝土实海服役试验研究[J]. 硅酸盐通报, 2017, 36(7): 2186-2191. SHENG J S, LIN Z, CHENG D, et al. Concrete admixed with modified auxiliary cementing materials for real sea service[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7): 2186-2191 (in Chinese). [11] 鲍玖文, 魏佳楠, 张 鹏, 等. 海洋环境下混凝土抗氯离子侵蚀的相似性研究进展[J]. 硅酸盐学报, 2020, 48(5): 689-704. BAO J W, WEI J N, ZHANG P, et al. Research progress of similarity of resistance to chloride ingress into concrete exposed to marine environment[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 689-704 (in Chinese). [12] ZHANG Y, ZHOU X Y, ZHAO J, et al. Time dependency and similarity of decay process of chloride diffusion in concrete under simulated marine tidal environment[J]. Construction and Building Materials, 2019, 205: 332-343. [13] 石佳乐. 不同干湿循环环境下水泥基材料抗氯离子侵蚀试验及相似性[D]. 杭州: 浙江工业大学, 2015: 1-9. SHI J L. Experimental study on chloride penetration in cement-based materials under different dry-wet cycleing environments and similarities analysis[D]. Hangzhou: Zhejiang University of Technology, 2015: 1-9 (in Chinese). [14] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 人造气氛腐蚀试验 盐雾试验: GB/T 10125—2012[S]. 北京: 中国标准出版社, 2013. General Administration of Quality Supervision, Inspection and Quarantine, China National Standardization Management Committee. Artificial atmosphere corrosion test salt spray test: GB/T 10125—2012[S].Beijing : China Standard Press, 2013 (in Chinese). [15] ASTM Committee. Standard practice for operation salt spray (fog) apparatus: ASTM B117—19[S]. West Conshohocken, Pennsylvania, the United States, 2019. [16] 钟丽娟, 黄庆华, 顾祥林, 等. 盐雾环境下混凝土中氯离子侵蚀加速试验的综述[J]. 结构工程师, 2009, 25(3): 144-149. ZHONG L J, HUANG Q H, GU X L, et al. Analysis of accelerated chloride penetration tests for concrete in salt-fog environment[J]. Structural Engineers, 2009, 25(3): 144-149 (in Chinese). [17] LIU P, YU Z W, LU Z H, et al. Predictive convection zone depth of chloride in concrete under chloride environment[J]. Cement and Concrete Composites, 2016, 72: 257-267. [18] 杨晓然, 赵方超, 杨小奎, 等. 多因素综合海洋气候环境模拟加速试验箱研制[J]. 装备环境工程, 2022, 19(10): 141-150. YANG X R, ZHAO F C, YANG X K, et al. Development of multifactor integrated marine climate simulation and acceleration test chamber[J]. Equipment Environmental Engineering, 2022, 19(10): 141-150 (in Chinese). [19] 苏林王. 荷载与海洋环境耦合作用下海工混凝土结构耐久性研究[D]. 广州: 华南理工大学, 2016: 28-36. SU L W. Study on the durability behavior of marine concrete structures under loading and ocean environment[D]. Guangzhou: South China University of Technology, 2016: 28-36 (in Chinese). [20] 苏林王, 蔡 健, 刘培鸽, 等. 盐雾环境与交变荷载下混凝土梁的试验研究[J]. 华南理工大学学报(自然科学版), 2017, 45(5): 97-104. SU L W, CAI J, LIU P G, et al. Experimental investigation into RC beam under the action of alternating load in salt-spray environment[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(5): 97-104 (in Chinese). [21] 王振佳. 混凝土桥梁结构环境模拟试验方案及加载装置研究[D]. 西安: 长安大学, 2017: 27-37. WANG Z J. Studies on the environmental simulation test scheme of concrete bridge structures and the loading device[D]. Xi’an: Changan University, 2017: 27-37 (in Chinese). [22] 蒋一星. 荷载耦合作用下RC梁盐雾环境加速试验方法及损伤机理研究[D]. 重庆: 重庆交通大学, 2021: 21-37. JIANG Y X. Research on accelerated test method and damage mechanism of RC beams under coupled salt spray environment and loading[D]. Chongqing: Chongqing Jiaotong University, 2021: 21-37 (in Chinese). [23] 赵 蕊, 金祖权, 曹杰荣, 等. 海洋环境中温湿度变化对混凝土氯离子传输研究[J]. 海洋工程, 2018, 36(1): 99-106. ZHAO R, JIN Z Q, CAO J R, et al. Numercial simulation of chloride ions transportation considering temperature and humidity in marine environment[J]. The Ocean Engineering, 2018, 36(1): 99-106 (in Chinese). [24] UKPATA J O, BASHEER P A M, BLACK L. Slag hydration and chloride binding in slag cements exposed to a combined chloride-sulphate solution[J]. Construction and Building Materials, 2019, 195: 238-248. [25] PANESAR D K, CHIDIAC S E. Effect of cold temperature on the chloride-binding capacity of cement[J]. Journal of Cold Regions Engineering, 2011, 25(4): 133-144. [26] SHAO W, SHI D D, LI J P. Effect of environment temperature on chloride diffusion in RC pipe piles[J]. Journal of Civil and Environmental Engineering, 2019, 41(2): 12-19. [27] SO H S, CHOI S H, SEO K S, et al. The properties of chloride ion diffusion of concrete under high temperature conditions, with implications for the storage of spent nuclear fuel in concrete casks[J]. KSCE Journal of Civil Engineering, 2014, 18(7): 2227-2233. [28] ZHAO Y X, CHEN C, GAO X J, et al. Seasonal variation of surface chloride ion content and chloride diffusion coefficient in a concrete dock[J]. Advances in Structural Engineering, 2013, 16(2): 395-403. [29] 金立兵. 多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D]. 杭州: 浙江大学, 2008: 81-117. JIN L B. Multi-environmental time similarity (METS) theory and its application in coastal concrete structural durability[D]. Hangzhou: Zhejiang University, 2008: 81-117 (in Chinese). [30] 李中原. 海洋大气环境下混凝土中氯离子的传输试验及数值模拟研究[D]. 郑州: 河南工业大学, 2019: 14-43. LI Z Y. Study of stability of the prefabricated ground-supported corrugated steel silo under loading of grain[D]. Zhengzhou: Henan University of Technology, 2019: 14-43 (in Chinese). [31] DOUSTI A, RASHETNIA R, AHMADI B, et al. Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite[J]. Construction and Building Materials, 2013, 49: 393-399. [32] DHIR R K, JONES M R, ELGHALY A E. PFA concrete: exposure temperature effects on chloride diffusion[J]. Cement and Concrete Research, 1993, 23(5): 1105-1114. [33] SAMSON E, MARCHAND J. Modeling the effect of temperature on ionic transport in cementitious materials[J]. Cement and Concrete Research, 2007, 37(3): 455-468. [34] SHAO W, LI J P, LIU Y. Influence of exposure temperature on chloride diffusion into RC pipe piles exposed to atmospheric corrosion[J]. Journal of Materials in Civil Engineering, 2016, 28(5): 04016002. [35] ISTEITA M, XI Y P. The effect of temperature variation on chloride penetration in concrete[J]. Construction and Building Materials, 2017, 156: 73-82. [36] ZHOU M, LIAO J C, AN L. Effect of multiple environmental factors on the adhesion and diffusion behaviors of chlorides in a bridge with coastal exposure: long-term experimental study[J]. Journal of Bridge Engineering, 2020, 25(10): 04020081. [37] CHEN B, GHANI RAZAQPUR A. Exposure duration and sub-zero temperature effects on concrete chloride diffusion decay index and binding[J]. Construction and Building Materials, 2021, 313: 125368. [38] PHAM N D, KURIYAMA Y, KASAI N Y, et al. A new analysis of wind on chloride deposition for long-term aerosol chloride deposition monitoring with weekly sampling frequency[J]. Atmospheric Environment, 2019, 198: 46-54. [39] BRUCH W, PIAZZOLA J, BRANGER H, et al. Sea-spray-generation dependence on wind and wave combinations: a laboratory study[J]. Boundary-Layer Meteorology, 2021, 180(3): 477-505. [40] THOMAS M A, DEVASTHALE A, KAHNERT M. Marine aerosol properties over the Southern Ocean in relation to the wintertime meteorological conditions[J]. Atmospheric Chemistry and Physics, 2022, 22(1): 119-137. [41] KIM T K, CHOI S J, CHOI J H, et al. Prediction of chloride penetration depth rate and diffusion coefficient rate of concrete from curing condition variations due to climate change effect[J]. International Journal of Concrete Structures and Materials, 2019, 13(1): 1-13. [42] MEIRA G R, ANDRADE C, ALONSO C, et al. Salinity of marine aerosols in a Brazilian coastal area-influence of wind regime[J]. Atmospheric Environment, 2007, 41(38): 8431-8441. [43] 孙拴虎. 铁路整体道床混凝土干缩特性及开裂防治研究[D]. 兰州: 兰州理工大学, 2019: 27-47. SUN S H. Study on shrinkage characteristics and cracking prevention of railway integral track bed concrete[D]. Lanzhou: Lanzhou University of Technology, 2019: 27-47 (in Chinese). [44] OSLAKOVIC I S, BJEGOVIC D, MIKULIC D. Evaluation of service life design models on concrete structures exposed to marine environment[J]. Materials and Structures, 2010, 43(10): 1397-1412. [45] GUSTAFSSON M E R, FRANZÉN L G. Dry deposition and concentration of marine aerosols in a coastal area, SW Sweden[J]. Atmospheric Environment, 1996, 30(6): 977-989. [46] PETCHERDCHOO A, CHINDAPRASIRT P. Exponentially aging functions coupled with time-dependent chloride transport model for predicting service life of surface-treated concrete in tidal zone[J]. Cement and Concrete Research, 2019, 120: 1-12. [47] MEIRA G R, PINTO W T A, LIMA E E P, et al. Vertical distribution of marine aerosol salinity in a Brazilian coastal area-the influence of wind speed and the impact on chloride accumulation into concrete[J]. Construction and Building Materials, 2017, 135: 287-296. [48] 朱秋硕. 盐雾区混凝土桥梁氯离子附着量的数值模拟及侵蚀分析[D]. 天津: 天津大学, 2018: 51-61. ZHU Q S. Numerical simulation of chloride ion adhesion and erosion analysis of concrete bridge in salt fog area[D]. Tianjin: Tianjin University, 2018: 51-61 (in Chinese). [49] MCDONALD R L, UNNI C K, DUCE R A. Estimation of atmospheric sea salt dry deposition: wind speed and particle size dependence[J]. Journal of Geophysical Research, 1982, 87(C2): 1246. [50] 杨绿峰, 蔡 荣, 余 波. 海洋大气区混凝土表面氯离子浓度的形成机理和多因素模型[J]. 土木工程学报, 2017, 50(12): 46-55. YANG L F, CAI R, YU B. Formation mechanism and multi-factor model for surface chloride concentration of concrete in marine atmosphere zone[J]. China Civil Engineering Journal, 2017, 50(12): 46-55 (in Chinese). [51] 黄国理. 海洋氯化物环境下混凝土表面氯离子浓度的时变概率预测模型与设计值研究[D]. 南宁: 广西大学, 2017: 74-94. HUANG G L. Study on time-dependent probabilistic prediction model and design value of surface chloride concentration of concrete in marine chloride environment[D]. Nanning: Guangxi University, 2017: 74-94 (in Chinese). [52] SANTUCCI R J, DAVIS R S, SANDERS C E. Atmospheric corrosion severity and the precision of salt deposition measurements made by the wet candle method[J]. Corrosion Engineering, Science and Technology, 2022, 57(2): 147-158. [53] LIU J, OU G F, QIU Q W, et al. Atmospheric chloride deposition in field concrete at coastal region[J]. Construction and Building Materials, 2018, 190: 1015-1022. [54] MEIRA G R, ANDRADE C, ALONSO C, et al. Modelling Sea-salt transport and deposition in marine atmosphere zone-A tool for corrosion studies[J]. Corrosion Science, 2008, 50(9): 2724-2731. [55] 蒋文宇. 盐雾环境下混凝土结构耐久性的试验研究[D]. 长沙: 长沙理工大学, 2011: 1-7. JIANG W Y. Salt fog environment the durability of concrete construction experimental studies[D]. Changsha: Changsha University of Science & Technology, 2011: 1-7 (in Chinese). [56] MEIRA G R, ANDRADE C, PADARATZ I J, et al. Chloride penetration into concrete structures in the marine atmosphere zone-Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete[J]. Cement and Concrete Composites, 2007, 29(9): 667-676. [57] UOMOTO T, ISHIBASHI T, NPBUTA Y, et al. Standard specifications for concrete structures—2007 by Japan society of civil engineers[J]. Concrete Journal, 2008, 46(7): 3-14. [58] 中国土木工程学会. 混凝土结构耐久性设计与施工指南: CCES 01—2004[S]. 北京: 中国建筑工业出版社, 2005. Chinese Society of Civil Engineering. Durability design and construction guide for concrete structures: CCES 01—2004[S].Beijing : China Building Industry Press, 2005 (in Chinese). [59] 汤志杰, 廖开星, 孔祥龙, 等. 滨海环境安全壳混凝土氯离子侵蚀规律研究[J]. 混凝土, 2015(5): 66-69. TANG Z J, LIAO K X, KONG X L, et al. Diffusion of chloride ion into containment concrete under coastal environment[J]. Concrete, 2015(5): 66-69 (in Chinese). [60] NOSRATZEHI N, MIRI M. Experimental investigation on chloride diffusion coefficient of self-compacting concrete in the Oman Sea[J]. Periodica Polytechnica Civil Engineering, 2020: 647-657. [61] XU J, LI T, ZHAN M, et al. Study on erosion characteristics and mechanisms of recycled concrete with tailings in salt spray environments[J]. Buildings, 2022, 12(4): 446. [62] LIU J, LIAO C Y, JIN H S, et al. Numerical model of the effect of water vapor environment on the chloride transport in concrete[J]. Construction and Building Materials, 2021, 311: 125330. [63] ZHANG H F, ZHANG W P, GU X L, et al. Chloride penetration in concrete under marine atmospheric environment-analysis of the influencing factors[J]. Structure and Infrastructure Engineering, 2016, 12(11): 1428-1438. [64] MUSTAFA M A, YUSOF K M. Atmospheric chloride penetration into concrete in semitropical marine environment[J]. Cement and Concrete Research, 1994, 24(4): 661-670. [65] COSTA A, APPLETON J. Chloride penetration into concrete in marine environment-part II: prediction of long term chloride penetration[J]. Materials and Structures, 1999, 32(5): 354-359. [66] CAI R, HU Y S, YU M, et al. Skin effect of chloride ingress in marine concrete: a review on the convection zone[J]. Construction and Building Materials, 2020, 262: 120566. [67] 乔宏霞, 张 璐, 冯 琼, 等. 盐雾-烘干循环作用下钢筋混凝土腐蚀特性研究[J]. 功能材料, 2020, 51(5): 5161-5167. QIAO H X, ZHANG L, FENG Q, et al. Study on corrosion characteristics of reinforced concrete under salt spary-drying cycle[J]. Journal of Functional Materials, 2020, 51(5): 5161-5167 (in Chinese). [68] SHI C J, HU X, WANG X G, et al. Effects of chloride ion binding on microstructure of cement pastes[J]. Journal of Materials in Civil Engineering, 2017, 29(1): 04016183. [69] SONG C, JIANG C, GU X L, et al. Calibration analysis of chloride binding capacity for cement-based materials under various exposure conditions[J]. Construction and Building Materials, 2022, 314: 125588. [70] DEBOUCHA W, OUDJIT M N, BOUZID A, et al. Effect of incorporating blast furnace slag and natural pozzolana on compressive strength and capillary water absorption of concrete[J]. Procedia Engineering, 2015, 108: 254-261. [71] CHENG S K, SHUI Z H, SUN T, et al. Effects of sulfate and magnesium ion on the chloride transportation behavior and binding capacity of Portland cement mortar[J]. Construction and Building Materials, 2019, 204: 265-275. [72] HE F Q, WANG R P, SHI C J, et al. Effect of bound chloride on extraction of water soluble chloride in cement-based materials exposed to a chloride salt solution[J]. Construction and Building Materials, 2018, 160: 223-232. [73] LIU J, OU G F, QIU Q W, et al. Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition[J]. Construction and Building Materials, 2017, 146: 493-501. [74] YANG L F, WANG L, YU B. Time-varying behavior and its coupling effects with environmental conditions and cementitious material types on surface chloride concentration of marine concrete[J]. Construction and Building Materials, 2021, 303: 124578. [75] 鲁彩凤, 袁迎曙, 季海霞, 等. 海洋大气中氯离子在粉煤灰混凝土中的传输规律[J]. 浙江大学学报(工学版), 2012, 46(4): 681-690. LU C F, YUAN Y S, JI H X, et al. Chloride ion transport in fly ash concrete under marine atmospheric environment[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(4): 681-690 (in Chinese). [76] NAGATAKI S, OTSUKI N, WEE T H, et al. Condensation of chloride ion in hardened cement matrix materials and on embedded steel bars[J]. ACI Materials Journal, 1993, 90(4): 323-332. [77] DHIR R K, EL-MOHR M A K, DYER T D. Developing chloride resisting concrete using PFA[J]. Cement and Concrete Research, 1997, 27(11): 1633-1639. [78] JIN Z Q, ZHAO X, ZHAO T J, et al. Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones[J]. Construction and Building Materials, 2018, 177: 170-183. [79] 薛 焕, 金祖权, 王晓杰. 混凝土在海洋暴露过程中的氯离子渗透研究[J]. 海洋工程, 2015, 33(5): 60-65. XUE H, JIN Z Q, WANG X J. Chloride ion penetration into concrete exposed to marine environment for a long period[J]. The Ocean Engineering, 2015, 33(5): 60-65 (in Chinese). [80] YE H L, JIN N G, JIN X Y, et al. Chloride ingress profiles and binding capacity of mortar in cyclic drying-wetting salt fog environments[J]. Construction and Building Materials, 2016, 127: 733-742. [81] LI D X, SHEN J L, CHEN Y M, et al. Study of properties on fly ash-slag complex cement[J]. Cement and Concrete Research, 2000, 30(9): 1381-1387. [82] 宋光辉. 临海结构混凝土盐雾干湿循环试验研究[J]. 混凝土与水泥制品, 2016(11): 9-12. SONG G H. Experimental research on coastal structural concrete under salt spray dry-wet cycle[J]. China Concrete and Cement Products, 2016(11): 9-12 (in Chinese). [83] 王 琼, 施惠生, 俞海勇, 等. 高性能混凝土中多元胶凝材料复合效应的研究[J]. 粉煤灰, 2002, 14(6): 3-6. WANG Q, SHI H S, YU H Y, et al. Study on composite effect of multi-component cementitious materials in high performance concrete[J]. Coal Ash China, 2002, 14(6): 3-6 (in Chinese). [84] HU X, SHI C J, LI J Q, et al. Chloride migration in cement mortars with ultra-low water to binder ratio[J]. Cement and Concrete Composites, 2021, 118: 103974. [85] OLSSON N, BAROGHEL-BOUNY V, NILSSON L O, et al. Non-saturated ion diffusion in concrete:a new approach to evaluate conductivity measurements[J]. Cement and Concrete Composites, 2013, 40: 40-47. [86] WALLY G B, MAGALHÃES F C, JUNIOR F K S, et al. Estimating service life of reinforced concrete structures with binders containing silica fume and metakaolin under chloride environment: durability indicators and probabilistic assessment[J]. Materials and Structures, 2021, 54(2): 98. [87] FERREIRA R M, CASTRO-GOMES J P, COSTA P, et al. Effect of metakaolin on the chloride ingress properties of concrete[J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1375-1384. [88] 谢 超, 王起才, 李 盛, 等. 养护温度和水灰比对混凝土微观孔结构及抗氯离子渗透性影响研究[J]. 硅酸盐通报, 2015, 34(12): 3663-3669. XIE C, WANG Q C, LI S, et al. Effect of the curing temperature and water to binder ratio on microstructure and resistance to chloride ion permeability of concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(12): 3663-3669 (in Chinese). [89] LIU J, QIU Q W, CHEN X C, et al. Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete[J]. Cement and Concrete Research, 2017, 95: 217-225. [90] REAL S, ALEXANDRE BOGAS J. Chloride ingress into structural lightweight aggregate concrete in real marine environment[J]. Marine Structures, 2018, 61: 170-187. [91] 刘 芳, 宋志刚, 潘仁泉, 等. 用Fick第二定律描述混凝土中氯离子浓度分布的适用性[J]. 混凝土与水泥制品, 2005(4): 7-10. LIU F, SONG Z G, PAN R Q, et al. Discussion on the feasibility of using Fick’s second law to descriping the distribution of chloric ions[J]. China Concrete and Cement Products, 2005(4): 7-10 (in Chinese). [92] 赵尚传. 氯盐环境下非承载力因素对受弯构件可靠性的影响[J]. 公路, 2003, 48(9): 12-17. ZHAO S C. Influence of non-bearing capacity factors on reliability of flexural members in chloride environment[J]. Highway, 2003, 48(9): 12-17 (in Chinese). [93] 孙丛涛. 基于氯离子侵蚀的混凝土耐久性与寿命预测研究[D]. 西安: 西安建筑科技大学, 2011: 72-84. SUN C T. Study on concrete durability and service life prediction based on chloride corrosion[D]. Xi’an: Xi’an University of Architecture and Technology, 2011: 72-84 (in Chinese). [94] 齐广政. 海洋大气环境下混凝土氯离子侵蚀性能的试验研究[D]. 西安: 西安建筑科技大学, 2012: 26-45. QI G Z. Experimental research on chloride ion erosion of concrete in the marine atmospheric environment[D]. Xi’an: Xi’an University of Architecture and Technology, 2012: 26-45 (in Chinese). [95] 阎西康, 冀轶超, 李志猛. 模拟大气中氯离子在混凝土中扩散的盐雾试验研究[J]. 混凝土, 2010(2): 32-34+47. YAN X K, JI Y C, LI Z M. Salt fog experiment research on diffusion of simulation of atmosphere chloride ions permeating into concrete[J]. Concrete, 2010(2): 32-34+47 (in Chinese). [96] 杜修力, 金 浏, 张仁波. 力学荷载对混凝土中氯离子渗透扩散行为影响述评[J]. 建筑结构学报, 2016, 37(1): 107-125. DU X L, JIN L, ZHANG R B. Review on effect of external mechanical loadings on chloride penetration and diffusion into concrete[J]. Journal of Building Structures, 2016, 37(1): 107-125 (in Chinese). [97] 凤 翔. 无砟轨道中氯离子的传输机制与模型研究[D]. 成都: 西南交通大学, 2019: 31-44. FENG X. Transfer mechanism and model research on the chloridion in ballastless track[D]. Chengdu: Southwest Jiaotong University, 2019: 31-44 (in Chinese). [98] MU S, DE SCHUTTER G, MA B G. Non-steady state chloride diffusion in concrete with different crack densities[J]. Materials and Structures, 2013, 46(1): 123-133. [99] 张伟平, 张庆章, 顾祥林, 等. 环境条件和应力水平对混凝土中氯离子传输的影响[J]. 江苏大学学报(自然科学版), 2013, 34(1): 101-106. ZHANG W P, ZHANG Q Z, GU X L, et al. Effects of environmental conditions and stress level on chloride ion transport in concrete[J]. Journal of Jiangsu University (Natural Science Edition), 2013, 34(1): 101-106 (in Chinese). [100] WANG Y Z, LIN C, CUI Y Q. Experiments of chloride ingression in loaded concrete members under the marine environment[J]. Journal of Materials in Civil Engineering, 2014, 26(6): 04014012. [101] CHEN Z P, LI S X, ZHOU J, et al. Flexural behavior of GFRP bars reinforced seawater sea sand concrete beams exposed to marine environment: experimental and numerical study[J]. Construction and Building Materials, 2022, 349: 128784. [102] 牛荻涛, 陆炫毅, 苗元耀, 等. 盐雾环境下疲劳损伤混凝土氯离子扩散性能[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(5): 617-620+648. NIU D T, LU X Y, MIAO Y Y, et al. Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2015, 47(5): 617-620+648 (in Chinese). [103] GAO L, LAI Y, ZHANG H, et al. Degradation of roller compacted concrete subjected to low-velocity fatigue impacts and salt spray cycles[J]. Advances in Concrete Construction, 2021, 12(5): 411-418. [104] COLLEPARDI M, MARCIALIS A, TURRIZIANI R. The kinetics of penetration of chloride ions into the concrete[J]. Cemento, 1970, 67(4): 157-164. [105] LIU R X, YIN H G, ZHANG L Y, et al. Model for the patterns of salt-spray-induced chloride corrosion in concretes under coupling action of cyclic loading and salt spray corrosion[J]. Processes, 2019, 7(2): 84. [106] CHEN D S, FENG Y P, SHEN J Y, et al. Experimental and simulation study on chloride diffusion in unsaturated concrete under the coupled effect of carbonation and loading[J]. Structures, 2022, 43: 1356-1368. [107] ABABNEH A, BENBOUDJEMA F, XI Y P. Chloride penetration in nonsaturated concrete[J]. Journal of Materials in Civil Engineering, 2003, 15(2): 183-191. [108] WANG Y Z, SONG Y W, YAN B C, et al. Experimental study of chloride transport law in concrete considering the coupling effects of dry-wet ratio and freeze-thaw damage[J]. Construction and Building Materials, 2022, 351: 128940. [109] GUZMÁN S, GÁLVEZ J C, SANCHO J M. Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration[J]. Cement and Concrete Research, 2011, 41(8): 893-902. [110] ZHANG Q Z, WANG F, LING Y F, et al. Investigation on numerical simulation of chloride transport in unsaturated concrete[J]. Advances in Materials Science and Engineering, 2021, 2021: 1-16. |
[1] | 齐晓, 肖前慧, 邱继生, 刘书林. 冻融循环与硫酸盐侵蚀共同作用下再生混凝土的微观结构研究[J]. 硅酸盐通报, 2023, 42(4): 1194-1204. |
[2] | 殷实, 李北星, 陈鹏博, 金德川. 再生砂混凝土毛细吸水特性研究[J]. 硅酸盐通报, 2023, 42(4): 1205-1216. |
[3] | 陈春红, 俞江, 刘荣桂, 王磊, 刘惠, 伍金龙. 干湿循环下再生细骨料混凝土的氯离子渗透性能[J]. 硅酸盐通报, 2023, 42(4): 1217-1225. |
[4] | 郭毅松, 刘乐冕, 陈剑锋. 油茶粕绿色发泡剂制备泡沫混凝土的试验研究[J]. 硅酸盐通报, 2023, 42(4): 1226-1232. |
[5] | 周程涛, 陈波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4): 1233-1241. |
[6] | 丁超, 贾子杰, 王振华, 丁玉贤. 基于生命周期评价的UHPC碳排放控制潜力评估[J]. 硅酸盐通报, 2023, 42(4): 1242-1251. |
[7] | 张虹宇, 郑玉龙, 陆春华. 两种养护制度下C100高强混凝土韧性对比试验研究[J]. 硅酸盐通报, 2023, 42(4): 1252-1259. |
[8] | 张劲竹, 刘华新, 王家贺, 柳根金, 王学志. 混杂纤维混凝土高温后性能劣化分析与强度预测[J]. 硅酸盐通报, 2023, 42(4): 1260-1269. |
[9] | 曹军平, 朱健, 高镇. 基于正交试验的EPS轻型混凝土配合比设计及性能研究[J]. 硅酸盐通报, 2023, 42(4): 1270-1281. |
[10] | 石建军, 许新春, 张志恒, 禹博, 钟海峰, 杨昭, 周铭, 李景阳. 不同产地防中子辐射蛇纹石骨料混凝土比选[J]. 硅酸盐通报, 2023, 42(4): 1282-1290. |
[11] | 冯玉林, 高鸽, 柴喜林, 毛攀, 董晶亮, 徐光前, 黄柯靓. 城市污泥尾矿陶粒的制备工艺及其性能与应用[J]. 硅酸盐通报, 2023, 42(4): 1374-1383. |
[12] | 黄利祥, 刘泽, 原航, 王栋民, 危鹏, 姜宏健. 赤泥-石膏复合激发蒸压加气混凝土的制备与性能研究[J]. 硅酸盐通报, 2023, 42(4): 1393-1399. |
[13] | 田青, 屈孟娇, 姚田帅, 祁帅, 王成, 阮梦月. 化学激发与热处理耦合作用对再生微粉的活性激发[J]. 硅酸盐通报, 2023, 42(4): 1400-1408. |
[14] | 李相国, 张乘, 吕阳, 李树国, 田博, 张成龙, 柯凯. 陶瓷抛光废料制备UHPC的耐久性能试验研究[J]. 硅酸盐通报, 2023, 42(4): 1418-1427. |
[15] | 杜晓伟, 刘辉, 李文举, 曹楷. 掺加热活化油页岩半焦混凝土的耐久性[J]. 硅酸盐通报, 2023, 42(4): 1428-1436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||