[1] 李红霞. 耐火材料发展概述[J]. 无机材料学报, 2018, 33(2): 198-205. LI H X. Development overview of refractory materials[J]. Journal of Inorganic Materials, 2018, 33(2): 198-205 (in Chinese). [2] 曾大凡. 新时代中国耐火材料行业发展新趋势[J]. 耐火材料, 2019, 53(5): 321-329. ZENG D F. Development trend of China's refractory industry in the new era[J]. Refractories, 2019, 53(5): 321-329 (in Chinese). [3] ZHAO Q, ZHENG X, LIU C J, et al. Corrosion behavior of MgO-C ladle refractory by molten slag[J]. Steel Research International, 2021, 92(4): 2000497. [4] LIU Z Y, YUAN L, JIN E D, et al. Wetting, spreading and corrosion behavior of molten slag on dense MgO and MgO-C refractory[J]. Ceramics International, 2019, 45(1): 718-724. [5] 张 欣, 黄 晨, 唐安山. 化学组成对耐火材料抗钠冰晶石侵蚀影响研究[J]. 硅酸盐通报, 2020, 39(7): 2302-2307. ZHANG X, HUANG C, TANG A S. Effect of chemical composition on corrosion resistance to cryolite of refractory[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2302-2307 (in Chinese). [6] 蒋旭勇, 黄 奥, 顾华志, 等. 低硅CaO-Al2O3渣对铝镁质浇注料的侵蚀[J]. 钢铁研究学报, 2022, 34(1): 58-63. JIANG X Y, HUANG A, GU H Z, et al. Corrosion of alumina-magnesia castable in contact with low SiO2 containing CaO-Al2O3 based slags[J]. Journal of Iron and Steel Research, 2022, 34(1): 58-63 (in Chinese). [7] PENG W D, CHEN Z, YAN W, et al. Advanced lightweight periclase-magnesium aluminate spinel refractories with high mechanical properties and high corrosion resistance[J]. Construction and Building Materials, 2021, 291: 123388. [8] JIAO K X, FAN X Y, ZHANG J L, et al. Corrosion behavior of alumina-carbon composite brick in typical blast furnace slag and iron[J]. Ceramics International, 2018, 44(16): 19981-19988. [9] REN X M, MA B Y, LI S M, et al. Comparison study of slag corrosion resistance of MgO-MgAl2O4, MgO-CaO and MgO-C refractories under electromagnetic field[J]. Journal of Iron and Steel Research International, 2021, 28(1): 38-45. [10] 王相辉, 赵鹏达, 范润东, 等. 中频炉内衬耐火材料抗硅铁渣侵蚀性能研究[J]. 硅酸盐通报, 2018, 37(12): 3912-3915. WANG X H, ZHAO P D, FAN R D, et al. Research on corrosion resistance of refractory material to Ferro silicon slag in intermediate frequency furnace[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3912-3915 (in Chinese). [11] PAN B, QIAN K M, XIE H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 2009, 20(6): 062001. [12] CHEN X, XU N, YANG L X, et al. High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system[J]. Measurement Science and Technology, 2012, 23(12): 125603. [13] BAQERSAD J, POOZESH P, NIEZRECKI C, et al. Photogrammetry and optical methods in structural dynamics: a review[J]. Mechanical Systems and Signal Processing, 2017, 86: 17-34. [14] PARK J, YOON S, KWON T H, et al. Assessment of speckle-pattern quality in digital image correlation based on gray intensity and speckle morphology[J]. Optics and Lasers in Engineering, 2017, 91: 62-72. [15] WANG W, XU C H, JIN H, et al. Measurement of high temperature full-field strain up to 2 000 ℃ using digital image correlation[J]. Measurement Science and Technology, 2017, 28(3): 035007. [16] SCHREIER H W, BRAASCH J R, SUTTON M A. Systematic errors in digital image correlation caused by intensity interpolation[J]. Optical Engineering, 2000, 39: 2915-2921. [17] GAO Y, CHENG T, SU Y, et al. High-efficiency and high-accuracy digital image correlation for three-dimensional measurement[J]. Optics and Lasers in Engineering, 2015, 65: 73-80. [18] REAGAN D, SABATO A, NIEZRECKI C. Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges[J]. Structural Health Monitoring, 2018, 17(5): 1056-1072. [19] SONG J L, YANG J H, LIU F J, et al. High temperature strain measurement method by combining digital image correlation of laser speckle and improved RANSAC smoothing algorithm[J]. Optics and Lasers in Engineering, 2018, 111: 8-18. [20] ZHENG Q, MASHIWA N, FURUSHIMA T. Evaluation of large plastic deformation for metals by a non-contacting technique using digital image correlation with laser speckles[J]. Materials & Design, 2020, 191: 108626. [21] BING P. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals[J]. Measurement Science and Technology, 2018, 29(8): 082001. [22] WU D, LIN L, REN H, et al. High-temperature deformation measurement of the heated front surface of hypersonic aircraft component at 1 200 ℃ using digital image correlation[J]. Optics and Lasers in Engineering, 2019, 122: 184-194. [23] GUO X, LIANG J, TANG Z, et al. High-temperature digital image correlation method for full-field deformation measurement captured with filters at 2 600 ℃ using spraying to form speckle patterns[J]. Optical Engineering, 2014, 53(6): 063101. [24] POIRIER J, BLOND E, DE BILBAO E, et al. New advances in the laboratory characterization of refractories: testing and modelling[J]. Metallurgical Research & Technology, 2017, 114(6): 610. [25] JIA X D, TIAN L, MAO S, et al. Slag erosion-resistant coating for periclase-magnesia-aluminum spinel brick[J]. Ceramics International, 2021, 47(22): 31407-31412. [26] 潘 兵, 吴大方, 高镇同. 基于数字图像相关方法的非接触高温热变形测量系统[J]. 航空学报, 2010, 31(10): 1960-1967. PAN B, WU D F, GAO Z T. A non-contact high-temperature deformation measuring system based on digital image correlation technique[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1960-1967 (in Chinese). [27] LI S H, HUANG A, GU H Z, et al. Visual measurement and characterisation of quasi-volcanic corrosion at alumina ceramic-oxides melt-air interface[J]. Journal of the European Ceramic Society, 2021, 41(16): 400-410. |