[1] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268.
[2] HAERTLING G H. Ferroelectric ceramics: history and technology[J]. Journal of the American Ceramic Society, 1999, 82(4): 797-818.
[3] YEO H G, XUE T C, ROUNDY S, et al. Strongly (001) oriented bimorph PZT film on metal foils grown by rf-sputtering for wrist-worn piezoelectric energy harvesters[J]. Advanced Functional Materials, 2018, 28(36): 1801327.
[4] BAEK S H, PARK J, KIM D M, et al. Giant piezoelectricity on Si for hyperactive MEMS[J]. Science, 2011, 334(6058): 958-961.
[5] GEORGE J P, SMET P F, BOTTERMAN J, et al. Lanthanide-assisted deposition of strongly electro-optic PZT thin films on silicon: toward integrated active nanophotonic devices[J]. ACS Applied Materials & Interfaces, 2015, 7(24): 13350-13359.
[6] HAN C S, PARK K S, CHOI H J, et al. Origin of in situ domain formation of heavily Nb-doped Pb(Zr, Ti)O3 thin films sputtered on Ir/TiW/SiO2/Si substrates for mobile sensor applications[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18904-18910.
[7] NICOLAS S, ALLAIN M, BRIDOUX C, et al. Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances[C]//2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). January 18-22, 2015, Estoril, Portugal. IEEE, 2015: 65-68.
[8] 谢丹丹, 周 静, 吴 智, 等. 铌镁酸钡缓冲层对锆钛酸铅薄膜漏电流的抑制[J]. 硅酸盐通报, 2019, 38(11): 3403-3408.
XIE D D, ZHOU J, WU Z, et al. Inhibition of leakage current in lead zirconate titanate thin films by barium magnesium niobate buffer layer[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3403-3408 (in Chinese).
[9] LIAN L, SOTTOS N R. Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films[J]. Journal of Applied Physics, 2000, 87(8): 3941-3949.
[10] SAMANTA S, SANKARANARAYANAN V, SETHUPATHI K. Effect of Nb and Fe co-doping on microstructure, dielectric response, ferroelectricity and energy storage density of PLZT[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(23): 20383-20394.
[11] 张 晶. PZT压电薄膜柔性化异质集成制造及其电学性能研究[D]. 太原: 中北大学, 2019.
ZHANG J. Flexible heterogeneous integration fabrication and study on electrical performance of PZT piezoelectric thin film[D]. Taiyuan: North University of China, 2019 (in Chinese).
[12] FUJII E, TAKAYAMA R, NOMURA K, et al. Preparation of (001)-oriented Pb(Zr, Ti)O3/thin films and their piezoelectric applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(12): 2431.
[13] MIYAZAKI H, MIWA Y, SUZUKI H. Improvement in fatigue property for a PZT ferroelectric film device with SRO electrode film prepared by chemical solution deposition[J]. Materials Science and Engineering: B, 2007, 136(2/3): 203-206.
[14] DOI H, KAGEYAMA K. Effect of metallic oxides containing composite electrodes on crystallization and ferroelectric properties of Pb(Zr0. 52, Ti0. 48)O3 thin films deposited by the Sol-gel method[J]. Journal of Sol-Gel Science and Technology, 1999, 16(1): 21-27.
[15] CHIOU Y K, WU T B. Characteristic of (100)-textured (PbxSr1-x)TiO3 thin films used for dram and tunable device application[J]. Integrated Ferroelectrics, 2006, 80(1): 395-405.
[16] WANG C, FANG Q F, ZHU Z G, et al. Dielectric properties of Pb(Zr20Ti80)O3/Pb(Zr80Ti20)O3 multilayered thin films prepared by rf magnetron sputtering[J]. Applied Physics Letters, 2003, 82(17): 2880-2882.
[17] JEONG Y S, LEE H U, LEE S G, et al. Annealing effect of platinum-based electrodes on physical properties of PZT thin films[J]. Current Applied Physics, 2009, 9(1): 115-119.
[18] VILQUIN B, LE RHUN G, BOUREGBA R, et al. Effect of in situ Pt bottom electrode deposition and of Pt top electrode preparation on PZT thin films properties[J]. Applied Surface Science, 2002, 195(1/2/3/4): 63-73.
[19] LI Q, WANG X, WANG F A, et al. Effect of neodymium substitution on crystalline orientation, microstructure and electric properties of Sol-gel derived PZT thin films[J]. Ceramics International, 2018, 44(7): 7709-7715.
[20] MA S, CHENG X W, ALI T, et al. Influence of tantalum on mechanical, ferroelectric and dielectric properties of Bi-excess Bi3. 25La0. 75Ti3O12 thin film[J]. Applied Surface Science, 2019, 463: 1141-1147.
[21] YANG J K, KIM W S, PARK H H. Enhanced fatigue property through the control of interfacial layer in Pt/PZT/Pt structure[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 12B): 7000-7002.
[22] BOSE A, SREEMANY M. Influence of processing conditions on the structure, composition and ferroelectric properties of sputtered PZT thin films on Ti-substrates[J]. Applied Surface Science, 2014, 289: 551-559.
[23] RANJAN R, KUMAR R, BEHERA B, et al. Effect of Sm on structural, dielectric and conductivity properties of PZT ceramics[J]. Materials Chemistry and Physics, 2009, 115(1): 473-477.
[24] PARASHAR S K S, CHOUDHARY R N P, MURTY B S. Electrical propeties of Gd-doped PZT nanoceramic synthesized by high-energy ball milling[J]. Materials Science and Engineering: B, 2004, 110(1): 58-63.
[25] ARA JO E B, EIRAS J A. Effects of crystallization conditions on dielectric and ferroelectric properties of PZT thin films[J]. Journal of Physics D: Applied Physics, 2003, 36(16): 2010-2013.
[26] WEN B H, ZHANG Y, LIU X L, et al. Fatigue improvement in modified lead zirconate titanate ceramics through employment of La0. 8Sr0. 2MnO3 buffer layers[J]. Ceramics International, 2013, 39(1): 219-225.
[27] CHEN F, CHENG J R, YU S W, et al. Structural and electrical properties of Pb(Zr0. 53Ti0. 47)O3 films prepared on La0. 5Sr0. 5CoO3 coated Si substrates[J]. Journal of the European Ceramic Society, 2010, 30(2): 453-457.
[28] KUMAR P, SINGH P, SINGH S, et al. Influence of lanthanum substitution on dielectric properties of modified lead zirconate titanates[J]. Ceramics International, 2015, 41(3): 5177-5181.
[29] SUI H T, SUN H J, LIU X F, et al. Ferroelectric and dielectric behaviors of Sol-gel derived perovskite PMN-PT/PZT heterostructures via compositional development: an interface-dependent study[J]. Journal of the European Ceramic Society, 2018, 38(16): 5382-5387.
[30] JIANG Q Y, CAO W W, CROSS L E. Electric fatigue in lead zirconate titanate ceramics[J]. Journal of the American Ceramic Society, 1994, 77(1): 211-215. |