[1] 吴林键, 鞠学莉, 马原飞, 等. 钢筋对混凝土中氯离子扩散的阻挡效应预测模型[J]. 建筑材料学报, 2021, 24(2): 296-303+332. WU L J, JU X L, MA Y F, et al. Prediction model of chloride diffusion in concrete considering the blocking effects of rebar[J]. Journal of Building Materials, 2021, 24(2): 296-303+332 (in Chinese). [2] 康天蓓, 刘 昱, 周静海, 等. 干湿循环下废弃纤维再生混凝土氯离子传输性能[J]. 建筑材料学报, 2022, 25(4): 389-394. KANG T B, LIU Y, ZHOU J H, et al. Chloride transport performance of waste fiber recycled concrete under dry-wet cycles[J]. Journal of Building Materials, 2022, 25(4): 389-394 (in Chinese). [3] 何世钦. 氯离子环境下钢筋混凝土构件耐久性能试验研究[D]. 大连: 大连理工大学, 2004. HE S Q. Experimental studies on durability of reinforced concrete members in chloride environment[D]. Dalian: Dalian University of Technology, 2004 (in Chinese). [4] 陈志强, 邓春林, 朱海威. 工程混凝土氯离子扩散系数控制因素及设计应用研究[J]. 建筑结构, 2022, 52(s1): 1551-1556. CHEN Z Q, DENG C L, ZHU H W. Control factors and design application of chloride ion diffusion coefficient in engineering concrete[J]. Building Structure, 2022, 52(s1): 1551-1556 (in Chinese). [5] 肖正华, 高洋洋. 碳达峰、碳中和目标下, 建筑业绿色技术创新提速[J]. 建筑监督检测与造价, 2021, 14(2): 45-46. XIAO Z H, GAO Y Y. Under the goal of carbon peak and carbon neutrality, green technology innovation in the construction industry accelerates[J]. Supervision Test and Cost of Construction, 2021, 14(2): 45-46 (in Chinese). [6] 刘 宇, 羊凌玉, 李欣蓓, 等. 碳中和目标实现下中国转型发展路径研究[J]. 北京理工大学学报(社会科学版), 2022, 24(4): 27-36. LIU Y, YANG L Y, LI X B, et al. Research on the pathway for China's transformation and development toward carbon neutrality[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(4): 27-36 (in Chinese). [7] 逄锦伟. 冻融循环作用下锂渣混凝土抗硫酸盐侵蚀研究[J]. 硅酸盐通报, 2019, 38(1): 304-309. PANG J W. Study on the sulfate corrosion resistance of concrete with lithium slag under the freezing and thawing cycles[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 304-309 (in Chinese). [8] 杜修力, 金 浏, 张仁波. 力学荷载对混凝土中氯离子渗透扩散行为影响述评[J]. 建筑结构学报, 2016, 37(1): 107-125. DU X L, JIN L, ZHANG R B. Review on effect of external mechanical loadings on chloride penetration and diffusion into concrete[J]. Journal of Building Structures, 2016, 37(1): 107-125 (in Chinese). [9] ZHANG J Z, BIAN F, ZHANG Y R, et al. Effect of pore structures on gas permeability and chloride diffusivity of concrete[J]. Construction and Building Materials, 2018, 163: 402-413. [10] 马丽莎, 温 勇, 马 蕾. 持续压荷载作用对锂渣混凝土气体渗透性的影响[J]. 混凝土, 2020(1): 45-49. MA L S, WEN Y, MA L. Effect of continuous pressure on gas permeability of lithium slag concrete[J]. Concrete, 2020(1): 45-49 (in Chinese). [11] FAN J C, ZHU H G, SHI J, et al. Influence of slag content on the bond strength, chloride penetration resistance, and interface phase evolution of concrete repaired with alkali activated slag/fly ash[J]. Construction and Building Materials, 2020, 263: 120639. [12] 张灵灵, 陆春华, 徐 可, 等. 荷载裂缝和养护龄期对混凝土内氯离子传输影响研究[J]. 硅酸盐通报, 2020, 39(4): 1100-1106. ZHANG L L, LU C H, XU K, et al. Investigation on influence of load cracks and curing age on chloride transport in concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1100-1106 (in Chinese). [13] 潘诗婷, 李 凯, 张超慧, 等. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 89-97. PAN S T, LI K, ZHANG C H, et al. Influence of coarse aggregate shape on chloride diffusivity in concrete by numerical modelling[J]. Materials Reports, 2022, 36(10): 89-97 (in Chinese). [14] 余 韬, 郑春扬, 王子明, 等. 持续压应力作用下基于电通量法的混凝土渗透性研究[C]//中国建筑材料联合会混凝土外加剂分会第十四次会员代表大会论文集. 2014: 158-163. YU T, ZHENG C Y, WANG Z M, et al. Study on permeability of concrete under continuous compressive stress based on electric flux method[C]//Selected Papers of the 14th Member Congress of Concrete Admixture Branch of China Building Materials Federation. 2014: 158-163 (in Chinese). [15] 邓 雷, 温 勇, 韩国旗, 等. 锂渣混凝土孔分形维数与气体渗透性能关系研究[J]. 混凝土, 2017(5): 68-71. DENG L, WEN Y, HAN G Q, et al. Relationship between pore fractal dimension and air permeability of lithium slag concrete[J]. Concrete, 2017(5): 68-71 (in Chinese). [16] 陈宣东, 韩建德, 王曙光, 等. 基于Comsol Multiphysics数值模拟荷载作用下掺加粉煤灰的混凝土中氯离子侵蚀的服役寿命[J]. 混凝土, 2016(8): 43-47+74. CHEN X D, HAN J D, WANG S G, et al. Service life of fly ash content concrete accompanying with chloride ion erosion under simulated load based on Comsol Multiphysics[J]. Concrete, 2016(8): 43-47+74 (in Chinese). [17] 李 梅. 锂渣粉及粉煤灰对水泥基材料氯离子渗透性的影响研究[D]. 乌鲁木齐: 新疆大学, 2014. LI M. The study on the effect of lithium slag powder and fly ash on the chloride penetration of cement-based material[D]. Urumqi: Xinjiang University, 2014 (in Chinese). [18] ISHIDA T, IQBAL P O, ANH H T L. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete[J]. Cement and Concrete Research, 2009, 39(10): 913-923. [19] SHAFIKHANI M, CHIDIAC S E. A holistic model for cement paste and concrete chloride diffusion coefficient[J]. Cement and Concrete Research, 2020, 133: 106049. [20] 冯乃谦, 邢 锋. 高性能混凝土的氯离子渗透性和导电量[J]. 混凝土, 2001(11): 3-7. FENG N Q, XING F. Chlorine ion permeability and electrical conductance of high performance concrete[J]. Concrete, 2001(11): 3-7 (in Chinese). |