[1] QIAN X F, REN M, FANG M Y, et al. Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants[J]. Applied Catalysis B: Environmental, 2018, 231: 108-114. [2] GONG Y, ZHAO X, ZHANG H, et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation[J]. Applied Catalysis B: Environmental, 2018, 233: 35-45. [3] XU S Q, ZHU H X, CAO W R, et al. Cu-Al2O3-g-C3N4 and Cu-Al2O3-C-dots with dual-reaction centres for simultaneous enhancement of Fenton-like catalytic activity and selective H2O2 conversion to hydroxyl radicals[J]. Applied Catalysis B: Environmental, 2018, 234: 223-233. [4] PARKHOMCHUK E V, GARCÍA-AGUILAR J, SASHKINA K A, et al. Ferrosilicate-based heterogeneous Fenton catalysts: influence of crystallinity, porosity, and iron speciation[J]. Catalysis Letters, 2018, 148(10): 3134-3146. [5] ADENUGA D O, TICHAPONDWA S M, CHIRWA E M N. Facile synthesis of a Ag/AgCl/BiOCl composite photocatalyst for visible-light-driven pollutant removal[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401: 112747. [6] MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment: a critical review[J]. Water Research, 2018, 139: 118-131. [7] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. [8] WENDERICH K, MUL G. Methods, mechanism, and applications of photodeposition in photocatalysis: a review[J]. Chemical Reviews, 2016, 116(23): 14587-14619. [9] DANTAS N S, DA SILVA A F, PERSSON C. Electronic band-edge properties of rock salt PbY and SnY (Y= S, Se, and Te)[J]. Optical Materials, 2008, 30(9): 1451-1460. [10] EIBELHUBER M, SCHWARZL T, SPRINGHOLZ G, et al. Lead salt microdisk lasers operating in continuous wave mode at 5.3 μm wavelength[J]. Applied Physics Letters, 2009, 94(2): 021118. [11] IBRAHIM M M, SALEH S A, IBRAHIM E M M, et al. Electrical and thermoelectric properties of PbSe doped with Sm[J]. Journal of Alloys and Compounds, 2008, 452(2): 200-204. [12] KIM S J, KIM W J, CARTWRIGHT A N, et al. Self-Passivating hybrid (organic/inorganic) tandem solar cell[J]. Solar Energy Materials and Solar Cells, 2009, 93(5): 657-661. [13] KHATAEE A, AREFI-OSKOUI S, FATHINIA M, et al. Synthesis, characterization and photocatalytic properties of Er-doped PbSe nanoparticles as a visible light-activated photocatalyst[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 255-267. [14] NARAYANAN S, SHAHBAZIAN-YASSAR R, SHOKUHFAR T. Transmission electron microscopy of the iron oxide core in ferritin proteins: current status and future directions[J]. Journal of Physics D: Applied Physics, 2019, 52(45): 453001. [15] SUZUKI M, ABE M, UENO T, et al. Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin[J]. Chemical Communications (Cambridge, England), 2009(32): 4871-4873. [16] HENNEQUIN B, TURYANSKA L, BEN T, et al. Aqueous near-infrared fluorescent composites based on apoferritin-encapsulated PbS quantum dots[J]. Advanced Materials, 2008, 20(19): 3592-3596. [17] CEOLÍN M, GÁLVEZ N, DOMÍNGUEZ-VERA J M. Thermal induced phase transitions and structural relaxation in apoferritin encapsulated copper nanoparticles[J]. Physical Chemistry Chemical Physics: PCCP, 2008, 10(29): 4327-4332. |