[1] GRUSKOVNJAK A, LOTHENBACH B, WINNEFELD F, et al. Hydration mechanisms of super sulphated slag cement[J]. Cement and Concrete Research, 2008, 38(7): 983-992. [2] WU Q Y, XUE Q Z, YU Z Q. Research status of super sulfate cement[J]. Journal of Cleaner Production, 2021, 294: 126228. [3] DA LUZ C A, HOOTON R D . Influence of curing temperature on the process of hydration of supersulfated cements at early age[J]. Cement and Concrete Research, 2015, 77: 69-75. [4] PINTO S R, DA LUZ C A, MUNHOZ G S, et al. Resistance of phosphogypsum-based supersulfated cement to carbonation and chloride ingress[J]. Construction and Building Materials, 2020, 263: 120640. [5] GROUNDS T, NOWELL D V, WILBURN F W. Resistance of supersulfated cement to strong sulfate solutions[J]. Journal of Thermal Analysis and Calorimetry, 2003, 72(1): 181-190. [6] 杨再银.中国工业副产石膏利用现状及“十四五”展望[J].硫酸工业,2021 (7):1-4+23. YANG Z Y. Utilization status of industrial by-product gypsum in China and its prospect in the 14th Five-Year Plan[J]. Sulphuric Acid Industry, 2021 (7): 1-4+23 (in Chinese). [7] 余保英,高育欣,王 军.含不同石膏种类的超硫酸盐水泥的水化行为[J].建筑材料学报,2014,17(6):965-971. YU B Y, GAO Y X, WANG J. Hydration behavior of super sulphated cement with different types of gypsum[J]. Journal of Building Materials, 2014, 17(6): 965-971 (in Chinese). [8] 徐 方,李 恒,孙 涛,等.过硫磷石膏矿渣水泥路面基层材料微观结构及力学性能[J].建筑材料学报,2022,25(3):228-234+277. XU F, LI H, SUN T, et al. Microstructure and mechanical properties of excess-sulfate phosphogypsum slag cementitious road base material[J]. Journal of Building Materials, 2022, 25(3): 228-234+277 (in Chinese). [9] 徐 方,李 恒,孙 涛,等.基于分子动力学模拟的过硫磷石膏矿渣水泥组成设计[J].复合材料学报,2022,39(6):2821-2828. XU F, LI H, SUN T, et al. Composition design of excess-sulfate phosphogypsum slag cement based on molecular dynamics simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2821-2828 (in Chinese). [10] 方佩佩,刘数华.改性磷石膏基超硫酸盐水泥研究进展[J].硅酸盐通报,2019,38(8):2430-2434+2441. FANG P P, LIU S H. Research progress of modified phosphogypsum-based supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2430-2434+2441 (in Chinese). [11] ANDRADE NETO J S, BERSCH J D, SILVA T S M, et al. Influence of phosphogypsum purification with lime on the properties of cementitious matrices with and without plasticizer[J]. Construction and Building Materials, 2021, 299: 123935. [12] LIU S H, WANG L. Investigation on strength and pore structure of supersulfated cement slurry[J]. Materials Science, 2018, 4(3): 319-326. [13] PINTO S R, DA LUZ C A, MUNHOZ G S, et al. Durability of phosphogypsum-based supersulfated cement mortar against external attack by sodium and magnesium sulfate[J]. Cement and Concrete Research, 2020, 136: 106172. [14] 权娟娟,张凯峰,王可娜.改性磷石膏对石膏矿渣水泥水化过程的影响研究[J].硅酸盐通报,2017,36(12):4033-4037+4043. QUAN J J, ZHANG K F, WANG K N. Effect of modified phosphogypsum on the hydration process of gypsum slag cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4033-4037+4043 (in Chinese). [15] LIU S H, WANG L, YU B Y. Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement[J]. Construction and Building Materials, 2019, 214: 9-16. [16] ASTM. Standard test method for chemical shrinkage of hydraulic cement paste: ASTM C1608-17[S]. ASTM International, West Conshohocken: Pennsylvania, 2017. [17] YANG J, ZENG J Y, HE X Y, et al. Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag[J]. Construction and Building Materials, 2022, 330: 127218. [18] HAHA M B, LOTHENBACH B, SAOUT G L, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: effect of Al2O3[J]. Cement and Concrete Research, 2012, 42(1): 74-83. [19] BANFILL P F G. Alkali-activated cements and concretes[J]. Advances in Cement Research, 2006, 18(4): 179-180. [20] ZHANG N, LI H X, LIU X M. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials[J]. Journal of Hazardous Materials, 2016, 314: 172-180. [21] JIANG D B, LI X G, LV Y, et al. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer[J]. Cement and Concrete Research, 2021, 149: 106581. [22] WANG Q, ZHUANG S Y, JIA R Q. An investigation on the anti-water properties of phosphorus building gypsum (PBG)-based mortar[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(4): 1575-1585. [23] 魏小胜.用电阻率表征水泥混凝土结构形成动力学及性能[M].武汉:武汉理工大学出版社,2016. WEI X S. Kinetics of structure formation and properties of concrete by electrical resistivity measurement[M]. Wuhan: Wuhan University of Technology Press, 2016 (in Chinese). [24] CUI Y, WANG H, WANG D Q, et al. Effects of Ca(OH)2 on the early hydration, macro-performance and environmental risks of the calcined phosphogypsum[J]. Construction and Building Materials, 2022, 324: 126590. [25] WANG Q, SUN S K, YAO G, et al. Preparation and characterization of an alkali-activated cementitious material with blast-furnace slag, soda sludge, and industrial gypsum[J]. Construction and Building Materials, 2022, 340: 127735. [26] 林宗寿.胶凝材料学[M].第2版.武汉:武汉理工大学出版社,2018. LIN Z S. Cementitious material science[M]. 2nd ed. Wuhan: Wuhan University of Technology Press, 2018 (in Chinese). [27] ZHANG Z W, QIAN J S, YOU C, et al. Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick[J]. Construction and Building Materials, 2012, 35: 109-116. [28] SUN H Q, QIAN J S, PENG S H, et al. Utilization of circulating fluidized bed combustion ash to prepare supersulfated cement[J]. Construction and Building Materials, 2022, 318: 125861. |