硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (12): 4115-4127.
所属专题: 水泥混凝土
• 水泥混凝土 • 下一篇
向恒, 李靖威, 郑睿鹏
收稿日期:
2022-07-11
修订日期:
2022-08-31
出版日期:
2022-12-15
发布日期:
2023-01-11
通信作者:
郑睿鹏,工程师。E-mail:zhengruipeng123@126.com
作者简介:
向 恒(1991—),男,工程师。主要从事核安全级电气设备鉴定工作。E-mail:xiangheng-2007@163.com
XIANG Heng, LI Jingwei, ZHENG Ruipeng
Received:
2022-07-11
Revised:
2022-08-31
Online:
2022-12-15
Published:
2023-01-11
摘要: 核电站在严重事故工况下,可能发生堆芯熔毁,进而超高温、高放射性堆芯熔融物将熔穿反应堆压力容器,存在污染外界环境的威胁。核电牺牲混凝土作为堆芯捕集器的关键材料,在核事故发生时可以改变堆芯熔融物的物理化学特性,对核电站的安全保护具有重要意义。为了全面认识牺牲混凝土高温性能及失效机制,科研工作者针对牺牲混凝土高温力学性能、高温物理性能、堆芯熔融物与混凝土的相互作用等开展了深入研究,以期对此类材料的开发与更新迭代提供指导。本文首先介绍了堆芯熔毁事故的工况特征,以及该工况下核电牺牲混凝土的关键性能要求,并分别总结了相关研究进展。多数研究结果表明,高温条件将导致牺牲混凝土力学性能恶化,并提升爆裂失效隐患,而聚丙烯纤维或石墨烯衍生物的掺加有望改善牺牲混凝土的服役性能。在其事故工况响应方面,由于真实堆芯熔融物具有高放射性特征,现阶段堆芯熔融物与牺牲混凝土相互作用的研究主要依靠模拟实验和数值仿真的方法来实现。目前,核电牺牲混凝土的相关研究依然存在空白等待填补,部分研究结论尚未统一。因此,深入理解牺牲混凝土劣化机理、全面认识堆芯熔融物与牺牲混凝土的相互作用,是未来该研究领域的重要发展方向。
中图分类号:
向恒, 李靖威, 郑睿鹏. 核电系统堆芯捕集器牺牲混凝土的研究进展[J]. 硅酸盐通报, 2022, 41(12): 4115-4127.
XIANG Heng, LI Jingwei, ZHENG Ruipeng. Research Progress of Sacrificial Concrete for Core Catcher in Nuclear Power System[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(12): 4115-4127.
[1] 侯艳丽.双碳目标下核电的高质量发展[J].能源,2022(4):32-36. HOU Y L. High quality development of nuclear power under the dual carbon target[J]. Energy, 2022(4): 32-36 (in Chinese). [2] 赵 琛,王一帆,李思颖,等.中国未来核电发展趋势与关键技术[J].能源与节能,2020(11):46-49+67. ZHAO C, WANG Y F, LI S Y, et al. Development trend and key technologies of nuclear power in China in the future[J]. Energy and Energy Conservation, 2020(11): 46-49+67 (in Chinese). [3] 黄祥瑞,高 佳,郑福裕.核电厂设计中的工效学:兼评三哩岛与切尔诺贝利事故[J].核动力工程,1994,15(3):193-198+204. HUANG X R, GAO J, ZHENG F Y. Ergonomic (human factors) problems in design of NPPs: the review of TMI and Chernbyl accidents[J]. Nuclear Power Engineering, 1994(3): 193-198+204 (in Chinese). [4] 周 伟.日本福岛核事故及对内陆核电建设的启示[J].电子质量,2017(12):103-107. ZHOU W. Japan's fukushima nuclear accident and its enlightenment to the construction of inland nuclear power[J]. Electronics Quality, 2017(12): 103-107 (in Chinese). [5] ALLELEIN H J, BÜRGER M. Considerations on ex-vessel corium behavior: scenarios, MCCI and coolability[J]. Nuclear Engineering and Design, 2006, 236(19/20/21): 2220-2236. [6] 刘 瑜,杨洪振,余 星,等.核电站堆芯捕集器简介及EPR堆芯捕集器安装管理[J].科技传播,2012,4(10):35-38. LIU Y, YANG H Z, YU X, et al. Introduction of core catcher and the installation of core catcher in EPR project[J]. Public Communication of Science & Technology, 2012, 4(10): 35-38 (in Chinese). [7] BITTERMANN D, FISCHER M, NIE M. Main features of the core melt stabilization system of the European pressurized water reactor)[C]//18th International Congress on Structural Mechanics of Reactors, Beijing, 2005. [8] 陈 泓.世界先进反应堆型:欧洲压水堆EPR介绍[J].中国电力,2000,33(2):65-69. CHEN H. Introduction to world advanced reactor type: European pressurized water reactor(EPR)[J]. Electric Power, 2000, 33(2): 65-69 (in Chinese). [9] 郑 华.EPR缓解SGTR事故的设计特点[J].核科学与工程,2010,30(1):15-18. ZHENG H. Design features for mitigating SGTR of EPR[J]. Chinese Journal of Nuclear Science and Engineering, 2010, 30(1): 15-18 (in Chinese). [10] KONINGS R. Comprehensive nuclear materials[M]. 5th ed. Holland: Elsevier, 2012 [11] 曹元超.核电牺牲混凝土的制备与性能研究[D].青岛:青岛理工大学,2012. CAO Y C. Research on preparation and property of sacrificial concrete[D]. Qingdao: Qingdao Tehcnology University, 2012 (in Chinese). [12] ULM F J, COUSSY O, BAANT Z P. The “chunnel” fire. I: chemoplastic softening in rapidly heated concrete[J]. Journal of Engineering Mechanics, 1999, 125(3): 272-282. [13] SEVÓN T. Molten core-concrete interactions in nuclear accidents: theory and design of an experimental facility[D]. Finland: Helsinki University of Technology, 2015. [14] NIE M. Temporary melt retention in the reactor pit of the European pressurized water reactor (EPR)[D]. Baden-Württemberg: Universitát Stuttgart, 2005. [15] BAZANT Z P, KAPLAN M F. Concrete at high temperatures: material properties and mathematical models[J]. Applied Mechanics Reviews, 1997: 1-424. [16] JOHNSON M, DENOIX A, BOUYER V, et al. High-temperature ex-vessel corium spreading. Part 1: experimental investigations on ceramic and sacrificial concrete substrates[J]. Journal of Nuclear Science and Technology, 2022, 59(4): 446-458. [17] 中国建筑成功研制核岛牺牲混凝土[N].中国质量报,2012(5):1. China construction successfully developed nuclear island sacrificial concrete[N]. China Quality News, 2012(5): 1 (in Chinese). [18] 褚洪岩.石墨烯改性牺牲混凝土制备、高温性能及与堆芯熔融物相互作用研究[D].南京:东南大学,2017:6-10. CHU H Y. Preparation and thermal behavior of sacrificial concrete with graphene nanosheets and molten core concrete interaction[D]. Nanjing: Southeast University, 2017: 6-10 (in Chinese). [19] 于英俊.核电牺牲混凝土与堆芯熔融物相互作用研究[D].南京:东南大学,2015. YU Y J. Study on the interaction between sacrificial concrete and melt corium (MCCI) in nuclear power plants[D]. Nanjing: Southeast University, 2015 (in Chinese). [20] 褚洪岩,孙 伟,蒋金洋.高温作用下牺牲混凝土的损伤演化[J].硅酸盐学报,2016,44(2):211-217. CHU H Y, SUN W, JIANG J Y. Damage evolution of sacrificial concrete subjected to elevated temperatures[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 211-217 (in Chinese). [21] 反应堆扩散区牺牲混凝土技术规范[Z].TS-X-NIEP-NEEC-G-2009-en-200331. Technical specification for sacrificial concrete in reactor diffusion zone[Z]. TS-X-NIEP-NEEC-G-2009-en-200331 (in Chinese). [22] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011. Ministry of Housing and Urban-Rural Development, PRC. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture and Building Press, 2011 (in Chinese). [23] 张树伟,李 昱.日本核电危机的演变历程及事故原因分析[J].能源技术经济,2011,23(4):5-9. ZHANG S W, LI Y. Evolution of nuclear crisis in Japan and analysis on causes of disaster[J]. Energy Technology and Economics, 2011, 23(4): 5-9 (in Chinese). [24] 王 龙.硅铁牺牲混凝土配合比的研制[C]//中国核科学技术进展报告(第五卷),中国核学会2017年学术年会论文集第5册(核材料分卷、辐射防护分卷),威海,2017. WANG L. Development of the mixture of ferrosilicon sacrificial concrete[C]//China Nuclear Science and Technology Progress Report (Volume 5), Proceedings of the 2017 Annual Conference of the Chinese Nuclear Society, Volume 5 (Nuclear Materials, Radiation Protection), Weihai, 2017 (in Chinese). [25] 李杰青,孙 伟,蒋金洋,等.牺牲混凝土在高温作用下的损伤及机理分析[J].东南大学学报(自然科学版),2013,43(3):599-603. LI J Q, SUN W, JIANG J Y, et al. Damage and mechanism analysis of sacrificial concrete under high temperature[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(3): 599-603 (in Chinese). [26] WU K M, WANG F, LIAO Q L, et al. Synthesis of pyrochlore-borosilicate glass-ceramics for immobilization of high-level nuclear waste[J]. Ceramics International, 2020, 46(5): 6085-6094. [27] 褚洪岩,蒋金洋,王凤娟,等.一种用于堆芯捕集器的牺牲混凝土及其制备方法:CN113773030B[P].2022-07-15. CHU H Y, JIANG J Y, WANG F J, et al. Sacrifice concrete for core trap and preparation method: CN113773030B[P]. 2022-07-15 (in Chinese). [28] 曹元超,金祖权,张巧芬.聚丙烯纤维对牺牲混凝土强度及早期抗裂性能的影响[J].混凝土与水泥制品,2012(2):38-40. CAO Y C, JIN Z Q, ZHANG Q F. Effects of polypropylene fiber on strength and early age crack resistance property of sacrificial concrete[J]. China Concrete and Cement Products, 2012(2): 38-40 (in Chinese). [29] 阳知乾.聚丙烯粗纤维增强混凝土应用研究进展[J].合成纤维,2009,38(6):10-14+39. YANG Z Q. Research on application of PP macro fiber in concrete reinforcement[J]. Synthetic Fiber in China, 2009, 38(6): 10-14+39 (in Chinese). [30] 郭瑞晋,毕 重,王 涪,等.高温后聚丙烯纤维混凝土力学性能研究进展[J].民营科技,2016(8):177. GUO R J, BI C, WANG F, et al. Research progress on mechanical properties of polypropylene fiber reinforced concrete after high temperature[J]. Heilongjiang Science and Technology Information, 2016(8): 177 (in Chinese). [31] 刘 逸,马 勇.聚丙烯纤维混凝土的性能与应用趋势[J].广东建材,2016,32(3):4-6. LIU Y, MA Y. Properties and application trends of polypropylene fiber reinforced concrete [J]. Guangdong Building Materials, 2016, 32(3): 4-6 (in Chinese). [32] 金祖权,孙 伟,侯保荣,等.混凝土的高温变形与微结构演化[J].东南大学学报(自然科学版),2010,40(3):619-623. JIN Z Q, SUN W, HOU B R, et al. Deformation and microstructure evolution of concrete subjected to elevated temperature[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(3): 619-623 (in Chinese). [33] LONG T P, CARINO N J. Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures[J]. ACI Materials Journal, 2002, 99(1): 54-66. [34] CASTILLO C, DURRANI A J. Effect of transient high temperture on high-strength concrete[J]. ACI Materials Journal, 1990, 87(1): 47-53. [35] WANG M, WANG R M, YAO H, et al. Study on the three dimensional mechanism of graphene oxide nanosheets modified cement[J]. Construction and Building Materials, 2016, 126: 730-739. [36] MOKHTAR M M, ABO-EL-ENEIN S A, HASSAAN M Y, et al. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement[J]. Construction and Building Materials, 2017, 138: 333-339. [37] LI X G, WEI W, QIN H, et al. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement[J]. Journal of Physics and Chemistry of Solids, 2015, 85: 39-43. [38] MOHAMMED A, SANJAYAN J G, DUAN W H, et al. Incorporating graphene oxide in cement composites: a study of transport properties[J]. Construction and Building Materials, 2015, 84: 341-347. [39] TONG T, FAN Z, LIU Q, et al. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials[J]. Construction and Building Materials, 2016, 106: 102-114. [40] RHEE I, KIM Y A, SHIN G O, et al. Compressive strength sensitivity of cement mortar using rice husk-derived graphene with a high specific surface area[J]. Construction and Building Materials, 2015, 96: 189-197. [41] WANG Q, WANG J, LU C X, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Materials, 2015, 30(4): 349-356. [42] HORSZCZARUK E, MIJOWSKA E, KALENCZUK R J, et al. Nanocomposite of cement/graphene oxide-Impact on hydration kinetics and Young's modulus[J]. Construction and Building Materials, 2015, 78: 234-242. [43] HOU D S, LU Z Y, LI X Y, et al. Reactive molecular dynamics and experimental study of graphene-cement composites: structure, dynamics and reinforcement mechanisms[J]. Carbon, 2017, 115: 188-208. [44] LI W G, LI X Y, CHEN S J, et al. Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste[J]. Construction and Building Materials, 2017, 136: 506-514. [45] HAO Q, WEI W, YUN H H. Synergistic effect of graphene-oxide-doping and microwave-curing on mechanical strength of cement[J]. Journal of Physics and Chemistry of Solids, 2017, 103: 67-72. [46] SEILER J M, LATROBE A, SEHGAL B R, et al. Analysis of corium recovery concepts by the EUROCORE group[J]. Nuclear Engineering and Design, 2003, 221(1/2/3): 119-136. [47] HA K S, KIM H Y, KIM J, et al. An evaluation of a direct cooling method for the ex-vessel corium stabilization[J]. Nuclear Engineering and Design, 2011, 241(12): 4737-4744. [48] SEVÓN T, KINNUNEN T, VIRTA J, et al. HECLA experiments on interaction between metallic melt and hematite-containing concrete[J]. Nuclear Engineering and Design, 2010, 240(10): 3586-3593. [49] COPUS E R, BROCKMANN J E, SIMPSON R B, et al. Core-concrete interactions using molten urania with zirconium on a limestone concrete basemat[R]. Office of Scientific and Technical Information (OSTI), 1992. [50] COPUS E R, BLOSE R E, BROCKMANN J E, et al. Core-concrete interactions using molten steel with zirconium on a basaltic basemat: the SURC-4 experiment[R]. Office of Scientific and Technical Information (OSTI), 1989. [51] DOUBLEVA G, ALSMEYER H, CRON T, et al. The COMET-L1 experiment on long-term MCCI and late melt surface flooding[R]. Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), 2006. [52] SDOUZ G, MAYRHOFER R, ALSMEYER H, et al. The COMET-L2 experiment on long-term MCCI with steel melt[R]. Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), 2006. [53] MIASSOEDOV A, ALSMEYER H, CRON T, et al. The COMET-L3 experiment on long-term melt-concrete interaction and cooling by surface flooding[J]. Nuclear Engineering and Design, 2010, 240(2): 258-265. [54] KARLSRUHE F, BERICHTE W, EPPINGER B, et al. Experiments on concrete erosion by a corium melt in the EPR reactor cavity: KAPOOL 6-8[R]. Forschungszentrum Karlsruhe, 2000. [55] FARMER M, BASU S. The results of the CCI-3 reactor material experiment investigating 2-D core-concrete interaction and debris coolability with a siliceous concrete crucible[Z]. Reno, NV USA: 2006, 1306-1313. [56] FARMER M T, AESCHLIMANN R W, KILSDONK D J, et al. OECD MCCI Project: 2-D core concrete interaction (CCI) tests (CCI-4 final report)[R]. Office of Scientific and Technical Information (OSTI), 2010. [57] ALSMEYER H, ADELHELM C, DILLMANN H G, et al. BETA experiments on melt-concrete interaction: the role of zirconium and the potential sump water contact during core melt-down accidents[J]. Nuclear Engineering and Design, 1995, 154(1): 61-68. [58] GUILLAUMÉ M, COMBEAU H, SEILER J M. An improved interface model for molten corium-concrete interaction[J]. Nuclear Engineering and Design, 2009, 239(6): 1084-1094. [59] MARUYAMA Y, KOJIMA Y, TAHARA M, et al. A study on concrete degradation during molten core/concrete interactions[J]. Nuclear Engineering and Design, 2006, 236(19/20/21): 2237-2244. [60] JOURNEAU C, PILUSO P, HAQUET J F, et al. Two-dimensional interaction of oxidic corium with concretes: the VULCANO VB test series[J]. Annals of Nuclear Energy, 2009, 36(10): 1597-1613. [61] SEVÓN T, JOURNEAU C, FERRY L. VULCANO VB-U7 experiment on interaction between oxidic corium and hematite-containing concrete[J]. Annals of Nuclear Energy, 2013, 59: 224-229. [62] LI X, YAMAJI A. A numerical study of isotropic and anisotropic ablation in MCCI by MPS method[J]. Progress in Nuclear Energy, 2016, 90: 46-57. [63] FARMER M T, SPENCER B W, BINDER D J, et al. Status and large scale MACE core coolability experiments[Z]. Karlsruhe, Germany, 1999. [64] STEINWARZ W, KOLLER W, DYLLONG N, et al. Ex-vessel core melt stabilization research (ECOSTAR)[J]. Nuclear Engineering and Design, 2003, 221(1/2/3): 77-94. [65] PARIDA F C, DAS S K, SHARMA A K, et al. Sodium exposure tests on limestone concrete used as sacrificial protection layer in FBR[C]//Proceedings of 14th International Conference on Nuclear Engineering, July 17-20, 2006, Miami, Florida, USA. 2008: 309-318. [66] GANESH V, KULKARNI P P, NAYAK A K. Experimental investigation of melt coolability behavior in an ex-vessel core catcher: the effect of flooding time[J]. Journal of Nuclear Engineering and Radiation Science, 2022, 8(3): 031401. [67] FOIT J J, FISCHER M, JOURNEAU C, et al. Experiments on MCCI with oxide and steel[J]. Annals of Nuclear Energy, 2014, 74: 100-109. [68] SPENGLER C, ALLELEIN H, CRANGA M, et al. Assessment and development of molten corium concrete interaction models for the integral code ASTEC[J]. Progress in Nuclear Energy, 2005. [69] NIE M, FISCHER M, LOHNERT G. Advanced MCCI modelling based on stringent coupling of thermal hydraulics and real solution thermochemistry in COSACO[C]//Proceedings of 10th International Conference on Nuclear Engineering, April 14-18, 2002, Arlington, Virginia, USA. 2009: 229-237. [70] KIM T W, SONG J, HUONG V T, et al. Sensitivity study on severe accident core melt progression for advanced PWR using MELCOR code[J]. Nuclear Engineering and Design, 2014, 269: 155-159. [71] TOURNIAIRE B, DUFOUR E, SPINDLER B. Foam formation in oxidic pool with application to MCCI real material experiments[J]. Nuclear Engineering and Design, 2009, 239(10): 1971-1978. [72] SPINDLER B, TOURNIAIRE B, SEILER J M. Simulation of MCCI with the TOLBIAC-ICB code based on the phase segregation model[J]. Nuclear Engineering and Design, 2006, 236(19/20/21): 2264-2270. [73] BONNEVILLE H, LUCIANI A. Simulation of the core degradation phase of the Fukushima accidents using the ASTEC code[J]. Nuclear Engineering and Design, 2014, 272: 261-272. [74] CHATELARD P, REINKE N, ARNDT S, et al. ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives[J]. Nuclear Engineering and Design, 2014, 272: 119-135. [75] CHATELARD P, REINKE N, EZZIDI A, et al. Synthesis of the ASTEC integral code activities in SARNET-focus on ASTEC V2 plant applications[J]. Annals of Nuclear Energy, 2014, 74: 224-242. [76] SEVÓN T. A heat transfer analysis of the CCI experiments 1-3[J]. Nuclear Engineering and Design, 2008, 238(9): 2377-2386. [77] YASUMURA Y, YAMAJI A, FURUYA M, et al. Investigation on influence of crust formation on VULCANO VE-U7 corium spreading with MPS method[J]. Annals of Nuclear Energy, 2017, 107: 119-127. [78] LI X, OKA Y. Numerical simulation of the SURC-2 and SURC-4 MCCI experiments by MPS method[J]. Annals of Nuclear Energy, 2014, 73: 46-52. [79] LI X, YAMAJI A. Three-dimensional numerical study on the mechanism of anisotropic MCCI by improved MPS method[J]. Nuclear Engineering and Design, 2017, 314: 207-216. [80] 广东核电培训中心.900 MW压水堆核电站系统与设备(上册)[M].广东:原子能出版社,2005:67. Guangdong Nuclear Power Training Center. Devices & systems of 900 MW PWR (volume 1)[M]. Guangdong: Atomic Energy Press, 2005: 67 (in Chinese). [81] ZHANG B, BICANIC N, PEARCE C J, et al. Residual fracture properties of normal- and high-strength concrete subject to elevated temperatures[J]. Magazine of Concrete Research, 2000, 52(2): 123-136. [82] ANDIÇ-ÇAKIR Ö, HIZAL S. Influence of elevated temperatures on the mechanical properties and microstructure of self consolidating lightweight aggregate concrete[J]. Construction and Building Materials, 2012, 34: 575-583. [83] POON C S, AZHAR S, ANSON M, et al. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures[J]. Cement and Concrete Research, 2001, 31(9): 1291-1300. [84] KALIFA P, CHÉNÉ G, GALLÉ C. High-temperature behaviour of HPC with polypropylene fibres[J]. Cement and Concrete Research, 2001, 31(10): 1487-1499. [85] CHAN S Y N, PENG G F, CHAN J K W. Comparison between high strength concrete and normal strength concrete subjected to high temperature[J]. Materials and Structures, 1996, 29(10): 616-619. [86] BEHNOOD A, GHANDEHARI M. Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures[J]. Fire Safety Journal, 2009, 44(8): 1015-1022. [87] KHALIQ W, KODUR V. Effectiveness of polypropylene and steel fibers in enhancing fire resistance of high-strength concrete columns[J]. Journal of Structural Engineering, 2018, 144(3): 04017224. [88] CHAN Y N, PENG G F, ANSON M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures[J]. Cement and Concrete Composites, 1999, 21(1): 23-27. [89] 牛旭婧,赵庆新,陈天红.聚丙烯粗纤维对高强混凝土高温后性能影响[J].硅酸盐通报,2013,32(12):2583-2588. NIU X J, ZHAO Q X, CHEN T H. Effect of polypropylene macro-fiber on properties of high-strength concrete after being exposed to high temperature[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(12): 2583-2588 (in Chinese). [90] 高丹盈,李翔宇,杨淑慧,等.高温后纤维矿渣微粉混凝土的劈拉性能[J].混凝土,2012(5):133-137. GAO D Y, LI X Y, YANG S H, et al. Splitting properties of fiber reinforced ground granulated blast furnace slag concrete after high temperature[J]. Concrete, 2012(5): 133-137 (in Chinese). [91] PENG G F, YANG W W, ZHAO J, et al. Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures[J]. Cement and Concrete Research, 2006, 36(4): 723-727. [92] NOUMOWE A N, SIDDIQUE R, DEBICKI G. Permeability of high-performance concrete subjected to elevated temperature (600 ℃)[J]. Construction and Building Materials, 2009, 23(5): 1855-1861. [93] PLIYA P, BEAUCOUR A L, NOUMOWÉ A. Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature[J]. Construction and Building Materials, 2011, 25(4): 1926-1934. [94] HEAP M J, LAVALLÉE Y, LAUMANN A, et al. The influence of thermal-stressing (up to 1 000 ℃) on the physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete[J]. Construction and Building Materials, 2013, 42: 248-265. [95] OZAWA M, MORIMOTO H. Effects of various fibres on high-temperature spalling in high-performance concrete[J]. Construction and Building Materials, 2014, 71: 83-92. [96] KALIFA P, MENNETEAU F D, QUENARD D. Spalling and pore pressure in HPC at high temperatures[J]. Cement and Concrete Research, 2000, 30(12): 1915-1927. [97] MINDEGUIA J C, PIMIENTA P, NOUMOWÉ A, et al. Temperature, pore pressure and mass variation of concrete subjected to high temperature: experimental and numerical discussion on spalling risk[J]. Cement and Concrete Research, 2010, 40(3): 477-487. [98] BANGI M R, HORIGUCHI T. Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures[J]. Cement and Concrete Research, 2011, 41(11): 1150-1156. [99] DI LUZIO G, BIOLZI L. Assessing the residual fracture properties of thermally damaged high strength concrete[J]. Mechanics of Materials, 2013, 64: 27-43. [100] PAN Z, SANJAYAN J G, COLLINS F. Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure[J]. Cement and Concrete Research, 2014, 56: 182-189. [101] CHU H Y, JIANG J Y, SUN W, et al. Thermal behavior of siliceous and ferro-siliceous sacrificial concrete subjected to elevated temperatures[J]. Materials & Design, 2016, 95: 470-480. [102] CHU H Y, JIANG J Y, SUN W, et al. Mechanical and physicochemical properties of ferro-siliceous concrete subjected to elevated temperatures[J]. Construction and Building Materials, 2016, 122: 743-752. [103] CHU H Y, JIANG J Y, SUN W, et al. Mechanical properties and damage evolution of siliceous concrete subjected to elevated temperatures[J]. Key Engineering Materials, 2016, 711: 488-495. [104] BAHR O, SCHAUMANN P, BOLLEN B, et al. Young's modulus and Poisson ratio of concrete at high temperatures: experimental investigations[J]. Materials & Design, 2013, 45: 421-429. [105] OMER S A, DEMIRBOGA R, KHUSHEFATI W H. Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures[J]. Construction and Building Materials, 2015, 94: 189-195. [106] XING Z, BEAUCOUR A L, HEBERT R, et al. Aggregate's influence on thermophysical concrete properties at elevated temperature[J]. Construction and Building Materials, 2015, 95: 18-28. [107] UYGUNOĞLU T, TOPÇU ⅰ B. Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature[J]. Construction and Building Materials, 2009, 23(9): 3063-3069. [108] SENGUL O, AZIZI S, KARAOSMANOGLU F, et al. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete[J]. Energy and Buildings, 2011, 43(2/3): 671-676. [109] SMITH J T, TIGHE S L. Recycled concrete aggregate coefficient of thermal expansion[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2113(1): 53-61. [110] NOUMOWÉ A, SIDDIQUE R, RANC G. Thermo-mechanical characteristics of concrete at elevated temperatures up to 310 ℃[J]. Nuclear Engineering and Design, 2009, 239(3): 470-476. [111] FARES H, NOUMOWE A, REMOND S. Self-consolidating concrete subjected to high temperature[J]. Cement and Concrete Research, 2009, 39(12): 1230-1238. [112] EL-DIEB A S. Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers[J]. Materials & Design, 2009, 30(10): 4286-4292. [113] JALAL M, MANSOURI E, SHARIFIPOUR M, et al. Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles[J]. Materials & Design, 2012, 34: 389-400. [114] BONJAK J, OBOLT J, HAHN R. Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup[J]. Cement and Concrete Research, 2013, 53: 104-111. [115] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. [116] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cement and Concrete Composites, 2015, 58: 140-147. [117] LV S H, DENG L J, YANG W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites[J]. Cement and Concrete Composites, 2016, 66: 1-9. [118] DELACROIX J, JOURNEAU C, PILUSO P. High-temperature characterization of melted nuclear core materials: investigating corium properties through the case studies of in-vessel and ex-vessel retention[J]. Frontiers in Energy Research, 2022, 10: 883972. |
[1] | 陈晶晶, 黄章益, 齐建起, 邓貌, 石阳, 胡春峰, 王皓民. (Ti0.25Zr0.25Nb0.25Ta0.25)C高熵陶瓷的制备、力学性能及氧化行为研究[J]. 硅酸盐通报, 2022, 41(6): 2117-2125. |
[2] | 王志旺;杨鼎宜;葛晨;李玉寿;吕锦飞. 热-力耦合作用下钢纤维混凝土性能研究[J]. 硅酸盐通报, 2019, 38(11): 3490-349. |
[3] | 刘新红;陈花朵;叶方保;钟香崇. 加入SiC、SiAlON对刚玉-SiC-SiAlON材料组成、结构和力学性能的影响[J]. 硅酸盐通报, 2008, 27(4): 715-720. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||