[1] 陈 平.钻井与完井工程[M].2版.北京:石油工业出版社,2011. CHEN P. Drilling and completion engineering[M]. 2nd ed. Beijing: Petroleum Industry Press, 2011 (in Chinese). [2] 夏元博,曾建国,张雯斐.页岩气井固井技术难点分析[J].天然气勘探与开发,2016,39(1):74-76+16. XIA Y B, ZENG J G, ZHANG W F. Technologic challenges in cementing shale-gas wells[J]. Natural Gas Exploration and Development, 2016, 39(1): 74-76+16 (in Chinese). [3] 孙坤忠,陶 谦,周仕明,等.丁山区块深层页岩气水平井固井技术[J].石油钻探技术,2015,43(3):55-60. SUN K Z, TAO Q, ZHOU S M, et al. Cementing technology for deep shale gas horizontal well in the dingshan block[J]. Petroleum Drilling Techniques, 2015, 43(3): 55-60 (in Chinese). [4] 王 磊,曾义金,张青庆,等.高温环境下油井水泥石力学性能试验[J].中国石油大学学报(自然科学版),2018,42(6):88-95. WANG L, ZENG Y J, ZHANG Q Q, et al. Experimental study on mechanical properties of oil well cement under high temperature[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(6): 88-95 (in Chinese). [5] PERNITES R B, SANTRA A K. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016, 72: 89-103. [6] DE SENA COSTA B L, DE SOUZA G G, DE OLIVEIRA FREITAS J C, et al. Silica content influence on cement compressive strength in wells subjected to steam injection[J]. Journal of Petroleum Science and Engineering, 2017, 158: 626-633. [7] LIU X H, JIANG J P, ZHANG H L, et al. Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash[J]. Applied Clay Science, 2020, 196: 105769. [8] LUKE K. Phase studies of pozzolanic stabilized calcium silicate hydrates at 180 ℃[J]. Cement and Concrete Research, 2004, 34(9): 1725-1732. [9] 薛荣胜,姜景山,张 超,等.废弃玻璃再生混凝土性能研究综述[J].江苏建材,2021(1):24-26. XUE R S, JIANG J S, ZHANG C, et al. Summarization of performance study on recycled concrete of waste glass[J]. Jiangsu Building Materials, 2021(1): 24-26 (in Chinese). [10] 陈柯宇,吴大志,胡俊涛,等.废弃玻璃替代河砂对地聚合物砂浆性能的影响[J].建筑材料学报,2022,25(6):577-584. CHEN K Y, WU D Z, HU J T, et al. Impact of substitution of river sand by waste glass on the properties of the geopolymer mortar[J]. Journal of Building Materials, 2022, 25(6): 577-584 (in Chinese). [11] 赵海东,柯国军,宋百姓,等.废玻璃粉对水泥浆体水化产物及胶砂孔结构的影响[J].混凝土,2018(10):106-109+122. ZHAO H D, KE G J, SONG B X, et al. Effect of waste glass powder on hydration products of cement paste and structure of plastic sand[J]. Concrete, 2018(10): 106-109+122 (in Chinese). [12] 李卓才,黄双凤,周 基,等.废玻璃粉后期火山灰活性研究[J].湖南科技学院学报,2017,38(6):46-47. LI Z C, HUANG S F, ZHOU J, et al. Pozzolanic activity of waste glass powders [J]. Journal of Hunan University of Science and Engineering, 2017, 38(6): 46-47 (in Chinese). [13] 张艺鸽,BOUILLON C,VLASOPOULOS N,等.高温高压对H级油井水泥早期抗压强度发展的影响[J].结构工程师,2016,32(3):64-69. ZHANG Y G, BOUILLON C, VLASOPOULOS N, et al. Effects of temperature and pressure on the compressive strength of class H oil well cement[J]. Structural Engineers, 2016, 32(3): 64-69 (in Chinese). [14] 张景富,徐 明,闫占辉,等.高温条件下G级油井水泥原浆及加砂水泥的水化和硬化(英文)[J].硅酸盐学报,2008,36(7):939-945. ZHANG J F, XU M, YAN Z H, et al. Hydration and hardening of class G oilwell cement with and without silica sands under high temperatures[J]. Journal of the Chinese Ceramic Society, 2008, 36(7): 939-945. [15] 杨智光,崔海清,肖志兴.深井高温条件下油井水泥强度变化规律研究[J].石油学报,2008,29(3):435-437. YANG Z G, CUI H Q, XIAO Z X. Change of cement stone strength in the deep high temperature oil well[J]. Acta Petrolei Sinica, 2008, 29(3): 435-437 (in Chinese). [16] ASTM C150. Standard specification for Portland cement[S]. West Conshohocken: ASTM International, 2020. [17] ZHU J.Prevent cement strength retrogression under ultra high temperature[C]//Abu Dhabi International Petroleum Exhibition & Conference, 2019. [18] API SPEC 10A. Cements and materials for well cementing[S]. Washington: American Petroleum Institute, 2019. [19] API RP 10B-2. Recommended practice for testing well cements[S]. Washington: American Petroleum Institute, 2013. [20] RAJABIPOUR F, GIANNINI E, DUNANT C, et al. Alkali-silica reaction: current understanding of the reaction mechanisms and the knowledge gaps[J]. Cement and Concrete Research, 2015, 76: 130-146. [21] BLACK L, GARBEV K, STUMM A. Structure, bonding and morphology of hydrothermally synthesised xonotlite[J]. Advances in Applied Ceramics, 2009, 108(3): 137-144. [22] TAYLOR H F W. Cement chemistry[M]. 2nd ed. London: Thomas Telford Publishing, 1997. [23] KLUG H, ALEXANDER L. X-Ray diffraction procedures for polycrystalline and amorphous materials[M]. New Jersey: John Wiley & Sons, 1974. [24] WARREN B E. X-ray diffraction [M]. England: Addison-Wesley, 1969. [25] KRAKOWIAK K J, THOMAS J J, JAMES S, et al. Development of silica-enriched cement-based materials with improved aging resistance for application in high-temperature environments[J]. Cement and Concrete Research, 2018, 105: 91-110. [26] KRAKOWIAK K J, THOMAS J J, MUSSO S, et al. Nano-chemo-mechanical signature of conventional oil-well cement systems: effects of elevated temperature and curing time[J]. Cement and Concrete Research, 2015, 67: 103-121. [27] HUA S D, WANG K J, YAO X. Developing high performance phosphogypsum-based cementitious materials for oil-well cementing through a step-by-step optimization method[J]. Cement and Concrete Composites, 2016, 72: 299-308. [28] MINDES S, YOUNG J F, DAREIN D. Concrete[M]. 2nd ed. New Jersey: Prentice Hall, 2002. [29] JIANG T, GENG C Z, YAO X, et al. Long-term thermal performance of oil well cement modified by silica flour with different particle sizes in HTHP environment[J]. Construction and Building Materials, 2021, 296: 123701. |