硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (9): 2993-3007.
韩强强, 路伟, 姜鲁, 王亚妹
收稿日期:
2022-04-24
修回日期:
2022-05-30
出版日期:
2022-09-15
发布日期:
2022-09-27
通讯作者:
姜 鲁,博士,讲师。E-mail:jianglu@nxu.edu.cn
作者简介:
韩强强(1995—),男,硕士研究生。主要从事微生物自修复混凝土的研究。E-mail:noandyes88@163.com
基金资助:
HAN Qiangqiang, LU Wei, JIANG Lu, WANG Yamei
Received:
2022-04-24
Revised:
2022-05-30
Online:
2022-09-15
Published:
2022-09-27
摘要: 开裂是混凝土结构常见的病害,裂缝为外界水和侵蚀性介质提供了通道,侵蚀性介质的进入会导致混凝土耐久性能加速劣化,严重影响工程结构的服役寿命。为有效阻止有害离子的侵入,延长构件服役期限,裂缝的及时修补是目前建筑业所共同面临的问题。微生物自修复混凝土受到了研究学者的广泛关注,与传统混凝土不同,微生物自修复混凝土赋予结构裂缝自诊断、自修复的功能,其主要修复体系可分为两种:一元修复体系和多元修复体系。本文从两种不同修复体系角度分析了微生物自修复混凝土的修复效果,总结了各体系下面临的关键问题,对比了两种体系下自修复效果的优缺点,并展望了基于微生物矿化的混凝土裂缝自修复研究的发展方向。对已有研究成果总结发现,若以一种具有矿化功能的核心菌体为基础,再加入厌氧型细菌辅助矿化,可实现裂缝深度修复,这种新型矿化体系为基于微生物矿化的自修复混凝土的研究提供了新思路。
中图分类号:
韩强强, 路伟, 姜鲁, 王亚妹. 微生物菌落体系对混凝土裂缝自修复效果的影响综述[J]. 硅酸盐通报, 2022, 41(9): 2993-3007.
HAN Qiangqiang, LU Wei, JIANG Lu, WANG Yamei. Review on Effect of Microbial Colony System on Self-Healing of Concrete Cracks[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(9): 2993-3007.
[1] ACHAL V, MUKHERJEE A. A review of microbial precipitation for sustainable construction[J]. Construction and Building Materials, 2015, 93: 1224-1235. [2] DE MUYNCK W, DE BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials: a review[J]. Ecological Engineering, 2010, 36(2): 118-136. [3] VAN TITTELBOOM K, DE BELIE N. Self-healing in cementitious materials: a review[J]. Materials (Basel, Switzerland), 2013, 6(6): 2182-2217. [4] LUO M, QIAN C X, LI R Y. Factors affecting crack repairing capacity of bacteria-based self-healing concrete[J]. Construction and Building Materials, 2015, 87: 1-7. [5] JACOBSEN S, SELLEVOLD E J. Self healing of high strength concrete after deterioration by freeze/thaw[J]. Cement and Concrete Research, 1996, 26(1): 55-62. [6] EDVARDSEN C. Water permeability and autogenous healing of cracks in concrete[J]. ACI Materials Journal, 1999, 96(4): 448-454. [7] REINHARDT H W, JOOSS M. Permeability and self-healing of cracked concrete as a function of temperature and crack width[J]. Cement and Concrete Research, 2003, 33(7): 981-985. [8] SCHMETS A J, ZAKEN G V D, ZWAAG S V D. Self healing materials: an alternative approach to 20 centuries of materials science[M]. Springer, 2007. [9] ABRAMS A. Autogenous healing of concrete[J]. Concrete, 1925: 10-50. [10] LI V C, LIM Y M, CHAN Y W. Feasibility study of a passive smart self-healing cementitious composite[J]. Composites Part B: Engineering, 1998, 29(6): 819-827. [11] DE MUYNCK W, COX K, DE BELIE N, et al. Bacterial carbonate precipitation as an alternative surface treatment for concrete[J]. Construction and Building Materials, 2008, 22(5): 875-885. [12] YANG Z X, HOLLAR J, HE X D, et al. A self-healing cementitious composite using oil core/silica gel shell microcapsules[J]. Cement and Concrete Composites, 2011, 33(4): 506-512. [13] YANG Y Z, LEPECH M D, YANG E H, et al. Autogenous healing of engineered cementitious composites under wet-dry cycles[J]. Cement and Concrete Research, 2009, 39(5): 382-390. [14] YANG Y Z, YANG E H, LI V C. Autogenous healing of engineered cementitious composites at early age[J]. Cement and Concrete Research, 2011, 41(2): 176-183. [15] LI V C, HERBERT E. Robust self-healing concrete for sustainable infrastructure[J]. Journal of Advanced Concrete Technology, 2012, 10(6): 207-218. [16] HU Z X, HU X M, CHENG W M, et al. Performance optimization of one-component polyurethane healing agent for self-healing concrete[J]. Construction and Building Materials, 2018, 179: 151-159. [17] DU W, LIN R S, LIU Q T. Investigation of isophorone diisocyanate microcapsules to improve self-healing properties and sulfate resistance of concrete[J]. Construction and Building Materials, 2021, 300: 124438. [18] HUANG Y J, WANG X F, SHENG M, et al. Dynamic behavior of microcapsule-based self-healing concrete subjected to impact loading[J]. Construction and Building Materials, 2021, 301: 124322. [19] 王晓磊,梁志权.内埋聚氨酯胶管混凝土自修复效果计算式[J].建筑材料学报,2020,23(4):794-800. WANG X L, LIANG Z Q. Calculation formula of self-repairing effect of concrete with polyurethane rubber hose embedded[J]. Journal of Building Materials, 2020, 23(4): 794-800 (in Chinese). [20] YU K Q, ZHU H, HOU M J, et al. Self-healing of PE-fiber reinforced lightweight high-strength engineered cementitious composite[J]. Cement and Concrete Composites, 2021, 123: 104209. [21] SNOECK D, DEBO J, DE BELIE N. Translucent self-healing cementitious materials using glass fibers and superabsorbent polymers[J]. Developments in the Built Environment, 2020, 3: 100012. [22] CHEN W H, FENG K, WANG Y, et al. Evaluation of self-healing performance of a smart composite material (SMA-ECC)[J]. Construction and Building Materials, 2021, 290: 123216. [23] KONLAN J, MENSAH P, IBEKWE S, et al. SMA z-pinned composite laminate with delamination healing capability[J]. Reference Module in Materials Science and Materials Engineering, 2021, 2: 395-415. [24] 徐建妙,泮佳佳,程 峰,等.混凝土微生物自修复材料的研究进展[J].硅酸盐学报,2021,49(2):429-440. XU J M, PAN J J, CHENG F, et al. Research progress of concrete microbial self-healing material[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 429-440 (in Chinese). [25] DAI Z, TSANGOURI E, TITTELBOOM K V, et al. Understanding fracture mechanisms via validated virtual tests of encapsulation-based self-healing concrete beams[J]. Materials & Design, 2022, 213: 110299. [26] VIJAY K, MURMU M, DEO S V. Bacteria based self healing concrete: a review[J]. Construction and Building Materials, 2017, 152: 1008-1014. [27] ZHENG T W, SU Y L, ZHANG X, et al. Effect and mechanism of encapsulation-based spores on self-healing concrete at different curing ages[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52415-52432. [28] JONKERS H M, THIJSSEN A, MUYZER G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36(2): 230-235. [29] JIANG L, JIA G H, JIANG C, et al. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications[J]. Construction and Building Materials, 2020, 232: 117222. [30] JIANG L, JIA G H, WANG Y Z, et al. Optimization of sporulation and germination conditions of functional bacteria for concrete crack-healing and evaluation of their repair capacity[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10938-10948. [31] WANG J Y, SOENS H, VERSTRAETE W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56: 139-152. [32] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites, 2011, 33(7): 763-770. [33] SINGH H, GUPTA R. Cellulose fiber as bacteria-carrier in mortar: self-healing quantification using UPV[J]. Journal of Building Engineering, 2020, 28: 101090. [34] KHUSHNOOD R A, QURESHI Z A, SHAHEEN N, et al. Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure[J]. Science of the Total Environment, 2020, 703: 135007. [35] SEIFAN M, SAMANI A K, BERENJIAN A. A novel approach to accelerate bacterially induced calcium carbonate precipitation using oxygen releasing compounds (ORCs)[J]. Biocatalysis and Agricultural Biotechnology, 2017, 12: 299-307. [36] SU Y L, QIAN C X, RUI Y F, et al. Exploring the coupled mechanism of fibers and bacteria on self-healing concrete from bacterial extracellular polymeric substances (EPS)[J]. Cement and Concrete Composites, 2021, 116: 103896. [37] HAO Y F, CHENG L, HAO H, et al. Enhancing fiber/matrix bonding in polypropylene fiber reinforced cementitious composites by microbially induced calcite precipitation pre-treatment[J]. Cement and Concrete Composites, 2018, 88: 1-7. [38] CHITHAMBAR GANESH A, MUTHUKANNAN M, MALATHY R, et al. An experimental study on effects of bacterial strain combination in fibre concrete and self-healing efficiency[J]. KSCE Journal of Civil Engineering, 2019, 23(10): 4368-4377. [39] LUO M, QIAN C X. Performance of two bacteria-based additives used for self-healing concrete[J]. Journal of Materials in Civil Engineering, 2016, 28(12): 04016151. [40] CHEN H C, QIAN C X, HUANG H L. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively[J]. Construction and Building Materials, 2016, 126: 297-303. [41] 魏冠奇.二元微生物自修复剂的制备及在混凝土裂缝修复中的应用[D].天津:天津城建大学,2020. WEI G Q. Preparation of binary microbial self-healing agent and application in concrete crack healing[D]. Tianjin: Tianjin Chengjian University, 2020 (in Chinese). [42] ZHU X J, MIGNON A, NIELSEN S D, et al. Viability determination of Bacillus sphaericus after encapsulation in hydrogel for self-healing concrete via microcalorimetry and in situ oxygen concentration measurements[J]. Cement and Concrete Composites, 2021, 119: 104006. [43] ZHANG J G, ZHAO C, ZHOU A J, et al. Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: insights into healing mechanisms and crystal polymorphs[J]. Construction and Building Materials, 2019, 224: 815-822. [44] KALA R S, VARA LAKSHMI T V S. Enhancement in properties of concrete by assessing bio-cement: trial mix paper[J]. Materials Today: Proceedings, 2021: 2214-7853. [45] OMOREGIE A I, KHOSHDELNEZAMIHA G, SENIAN N, et al. Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials[J]. Ecological Engineering, 2017, 109: 65-75. [46] KHALIQ W, EHSAN M B. Crack healing in concrete using various bio influenced self-healing techniques[J]. Construction and Building Materials, 2016, 102: 349-357. [47] KANWAL M, KHUSHNOOD R A, KHALIQ W, et al. Synthesis of pyrolytic carbonized bagasse to immobilize Bacillus subtilis; application in healing micro-cracks and fracture properties of concrete[J]. Cement and Concrete Composites, 2022, 126: 104334. [48] MONDAL S, GHOSH A. Spore-forming Bacillus subtilis vis-á-vis non-spore-forming Deinococcus radiodurans, a novel bacterium for self-healing of concrete structures: a comparative study[J]. Construction and Building Materials, 2021, 266: 121122. [49] 袁晓露,胡为民,刘冬梅.微生物水泥净浆的自修复性能研究[J].混凝土,2015(6):114-116+120. YUAN X L, HU W M, LIU D M. Effect of magnesium on properties of microbial cement paste[J]. Concrete, 2015(6): 114-116+120 (in Chinese). [50] VASHISHT R, ATTRI S, SHARMA D, et al. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete[J]. Microbiological Research, 2018, 207: 226-231. [51] RAUF M, KHALIQ W, KHUSHNOOD R A, et al. Comparative performance of different bacteria immobilized in natural fibers for self-healing in concrete[J]. Construction and Building Materials, 2020, 258: 119578. [52] PROŠEK Z, NEERKA V, PLACHY T, et al. PVA increases efficiency of bacterially-induced self-healing in cement mortars[J]. Cement and Concrete Composites, 2022, 131: 104593. [53] XU Q L, ZHANG C H, LI F C, et al. Arthrobacter sp. strain MF-2 induces high-Mg calcite formation: mechanism and implications for carbon fixation[J]. Geomicrobiology Journal, 2017, 34(2): 157-165. [54] QIAN C X, CHEN H C, REN L F, et al. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism[J]. Frontiers in Microbiology, 2015, 6: 1225. [55] SUNDARAM S, THAKUR I S. Induction of calcite precipitation through heightened production of extracellular carbonic anhydrase by CO2 sequestering bacteria[J]. Bioresource Technology, 2018, 253: 368-371. [56] ERŞAN Y Ç, DE BELIE N, BOON N. Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment[J]. Biochemical Engineering Journal, 2015, 101: 108-118. [57] ERŞAN Y Ç, VERBRUGGEN H, DE GRAEVE I, et al. Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion[J]. Cement and Concrete Research, 2016, 83: 19-30. [58] 贾 强,赵程程,孙增斌.微生物沉积碳酸钙修复混凝土裂缝抗渗性研究[J].应用基础与工程科学学报,2017,25(1):141-148. JIA Q, ZHAO C C, SUN Z B. Bearing pressure experimental research of the concrete cracks after bioremedying[J]. Journal of Basic Science and Engineering, 2017, 25(1): 141-148 (in Chinese). [59] SANTOSH K, RAMACHANDRAN S K, RAMAKRISHNAN V, et al. Remediation of concrete using microorganisms[J]. Journal of the American Concrete Institute, 2001, 98: 3-9. [60] 徐 晶,王彬彬.陶粒负载微生物的混凝土开裂自修复研究[J].材料导报,2017,31(14):127-131. XU J, WANG B B. Research on self-healing of concrete cracks by ceramsite immobilized microorganism[J]. Materials Review, 2017, 31(14): 127-131 (in Chinese). [61] SU Y L, LI F, HE Z Q, et al. Artificial aggregates could be a potential way to realize microbial self-healing concrete: an example based on modified ceramsite[J]. Journal of Building Engineering, 2021, 35: 102082. [62] WANG X Z, XU J, WANG Z P, et al. Use of recycled concrete aggregates as carriers for self-healing of concrete cracks by bacteria with high urease activity[J]. Construction and Building Materials, 2022, 337: 127581. [63] ALGAIFI H A, BAKAR S A, SAM A R M, et al. Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete[J]. Construction and Building Materials, 2020, 254: 119258. [64] 李沛豪,屈文俊.细菌诱导碳酸钙沉积修复混凝土裂缝[J].土木工程学报,2010,43(11):64-70. LI P H, QU W J. Remediation of concrete cracks by bacterially-induced calcium carbonate deposition[J]. China Civil Engineering Journal, 2010, 43(11): 64-70 (in Chinese). [65] MIRSHAHMOHAMMAD M, RAHMANI H, MALEKI-KAKELAR M, et al. Effect of sustained service loads on the self-healing and corrosion of bacterial concretes[J]. Construction and Building Materials, 2022, 322: 126423. [66] ALAZHARI M, SHARMA T, HEATH A, et al. Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete[J]. Construction and Building Materials, 2018, 160: 610-619. [67] QIAN C X, YU X N, ZHENG T W, et al. Review on bacteria fixing CO2 and bio-mineralization to enhance the performance of construction materials[J]. Journal of CO2 Utilization, 2022, 55: 101849. [68] ZHENG T W. Bacteria-induced facile biotic calcium carbonate precipitation[J]. Journal of Crystal Growth, 2021, 563: 126096. [69] ROSEWITZ J A, WANG S, SCARLATA S F, et al. An enzymatic self-healing cementitious material[J]. Applied Materials Today, 2021, 23: 101035. [70] LYU J J, LI F C, ZHANG C H, et al. From the inside out: elemental compositions and mineral phases provide insights into bacterial calcification[J]. Chemical Geology, 2021, 559: 119974. [71] DHAMI N K, REDDY M S, MUKHERJEE A. Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization[J]. Applied Biochemistry and Biotechnology, 2014, 172(5): 2552-2561. [72] 刘 璐,李福春,李 磊,等.细菌碳酸酐酶促进形成的碳酸盐矿物[J].中国岩溶,2017,36(4):433-440. LIU L, LI F C, LI L, et al. Carbonic anhydrase excreted by bacteria induces the formation of carbonate minerals[J]. Carsologica Sinica, 2017, 36(4): 433-440 (in Chinese). [73] 詹其伟.微生物捕碳浅层矿化胶结沙土及其抑尘应用[D].南京:东南大学,2018. ZHAN Q W. Cementation of sandy soil by shallow mineralization of microbe capturing carbon dioxide and application in fugitive dust suppression[D]. Nanjing: Southeast University, 2018 (in Chinese). [74] 蔡丽希,楚云猛,张光亚.可用于二氧化碳捕获过程的微生物碳酸酐酶的挖掘与改造[J].生物工程学报,2019,35(1):1-12. CAI L X, CHU Y M, ZHANG G Y. Mining and engineering of microbial carbonic anhydrases for biomimetic carbon dioxide sequestration[J]. Chinese Journal of Biotechnology, 2019, 35(1): 1-12 (in Chinese). [75] SONMEZ M, ERŞAN Y Ç. Production and compatibility assessment of denitrifying biogranules tailored for self-healing concrete applications[J]. Cement and Concrete Composites, 2022, 126: 104344. [76] VAN PAASSEN L A, DAZA C M, STAAL M, et al. Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36(2): 168-175. [77] 金泽康,张 旋,李 敏,等.微生物自修复混凝土裂缝自修复动力学模型[J].材料导报,2020,34(s2):1194-1200. JIN Z K, ZHANG X, LI M, et al. Crack self-healing kinetic model of microbial self-healing concrete[J]. Materials Reports, 2020, 34(s2): 1194-1200 (in Chinese). [78] 徐 晶,唐一洪,王先志.微生物沉积优化与混凝土自修复条件的相关性研究[J].材料导报,2021,35(22):22039-22044. XU J, TANG Y H, WANG X Z. Study on the correlation between the optimum conditions of microbially-induced CaCO3 precipitation and the prerequisites for self-healing concrete[J]. Materials Reports, 2021, 35(22): 22039-22044 (in Chinese). [79] ALLAHYARI H, HEIDARPOUR A, SHAYAN A. Experimental and analytical studies of bacterial self-healing concrete subjected to alkali-silica-reaction[J]. Construction and Building Materials, 2021, 310: 125149. [80] 刘 超,吕振源,肖建庄,等.再生骨料的微生物载具性及其在自修复混凝土中的应用[J].建筑材料学报,2020,23(6):1337-1344. LIU C, LÜ Z Y, XIAO J Z, et al. Carrier properties of recycled aggregates and its application in self-healing concrete[J]. Journal of Building Materials, 2020, 23(6): 1337-1344 (in Chinese). [81] ZHANG X, JIN Z K, LI M, et al. Effects of carrier on the performance of bacteria-based self-healing concrete[J]. Construction and Building Materials, 2021, 305: 124771. [82] ERSAN Y C, PALIN D M, YENGEC TASDEMIR S B, et al. Volume fraction, thickness, and permeability of the sealing layer in microbial self-healing concrete containing biogranules[J]. Frontiers in Built Environment, 2018, 4: 70. [83] FU Q L, WU Y J, LIU S Y, et al. The adaptability of Sporosarcina pasteurii in marine environments and the feasibility of its application in mortar crack repair[J]. Construction and Building Materials, 2022, 332: 127371. [84] 朱康杰,钱春香,李 敏,等.微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J].材料导报,2020,34(s2):1212-1216. ZHU K J, QIAN C X, LI M, et al. Effect of the size and dosage of microcapsule healing agent on the release rate of healing agent in microbial self-healing concrete[J]. Materials Reports, 2020, 34(s2): 1212-1216 (in Chinese). [85] TAN L Z, KE X Y, LI Q, et al. The effects of biomineralization on the localised phase and microstructure evolutions of bacteria-based self-healing cementitious composites[J]. Cement and Concrete Composites, 2022, 128: 104421. [86] KHUSHNOOD R A, ALI A M, FARAZ BHATTI M, et al. Self-healing fungi concrete using potential strains Rhizopus oryzae and Trichoderma longibrachiatum[J]. Journal of Building Engineering, 2022, 50: 104155. [87] 张家广,许顺顺,冯 涛,等.不同矿化微生物对混凝土裂缝自修复效果影响[J].清华大学学报(自然科学版),2019,59(8):607-613. ZHANG J G, XU S S, FENG T, et al. Effect of mineralized bacteria type on concrete crack self-healing capacity[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(8): 607-613 (in Chinese). [88] ZHU X J, WANG J Y, DE BELIE N, et al. Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation[J]. Applied Microbiology and Biotechnology, 2019, 103(21/22): 8825-8838. [89] ZHAO J Y, CSETENYI L, GADD G M. Fungal-induced CaCO3 and SrCO3 precipitation: a potential strategy for bioprotection of concrete[J]. Science of the Total Environment, 2022, 816: 151501. [90] WANG J Y, SNOECK D, VLIERBERGHE S V, et al. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete[J]. Construction and Building Materials, 2014, 68: 110-119. [91] RYPAROVÁ P, PROŠEK Z, SCHREIBEROVÁ H, et al. The role of bacterially induced calcite precipitation in self-healing of cement paste[J]. Journal of Building Engineering, 2021, 39: 102299. [92] KRUMHOLZ L R, HARRIS S H, TAY S T, et al. Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles[J]. Applied and Environmental Microbiology, 1999, 65(6): 2300-2306. [93] QIAN C X, ZHENG T W, ZHANG X, et al. Application of microbial self-healing concrete: case study[J]. Construction and Building Materials, 2021, 290: 123226. [94] 练继建,王昶力,闫 玥,等.微生物修复混凝土裂缝的试验观测[J].天津大学学报(自然科学与工程技术版),2019,52(7):669-679. LIAN J J, WANG C L, YAN Y, et al. Experimental observations on microbial remediation of concrete cracks[J]. Journal of Tianjin University (Science and Technology), 2019, 52(7): 669-679 (in Chinese). [95] ZHONG W H, YAO W. Influence of damage degree on self-healing of concrete[J]. Construction and Building Materials, 2008, 22(6): 1137-1142. [96] XU J, YAO W. Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent[J]. Cement and Concrete Research, 2014, 64: 1-10. [97] BOGAS J A, GOMES M G, GOMES A. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method[J]. Ultrasonics, 2013, 53(5): 962-972. |
[1] | 刘恩铭, 林明强, 谢群. 再生粗骨料混凝土抗冻性能研究进展[J]. 硅酸盐通报, 2022, 41(9): 2963-2978. |
[2] | 佘亮, 傅平丰, 邓威, 陈雨齐, 王显聪. 联合活化多元辅助胶凝材料对蒸养混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3059-3067. |
[3] | 肖世玉, 彭丙杰, 吴涛, 罗小东, 陶俊. 砂率及机制砂特性对混凝土流动性与颗粒膜层厚度的影响[J]. 硅酸盐通报, 2022, 41(9): 3068-3076. |
[4] | 单继雄, 李军, 侯永生, 胡艳民, 刘畅. 钙铝类水滑石对混凝土抗盐冻性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3084-3090. |
[5] | 余波, 黄俊辉, 汪加梁, 秦荷成. 考虑材料参数和应力水平的氯离子扩散系数多因素预测模型[J]. 硅酸盐通报, 2022, 41(9): 3091-3099. |
[6] | 王萧萧, 冯蓉蓉, 荆磊, 刘曙光, 闫长旺, 姜琳. 冰凌作用下天然浮石混凝土磨损规律研究[J]. 硅酸盐通报, 2022, 41(9): 3100-3106. |
[7] | 楼建敏, 张国辉, 杨振东, 孙俊崇, 李虎. 基于楔入劈拉法的湿态混凝土双K断裂特性试验研究[J]. 硅酸盐通报, 2022, 41(9): 3107-3114. |
[8] | 赵雅明, 张振, 王畔, 张明飞. 矿物掺合料对UHPC性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3170-3175. |
[9] | 王晨晨, 王学志, 陈东林, 贺晶晶. 基于正交试验的粉煤灰-硅锰渣再生混凝土力学性能研究[J]. 硅酸盐通报, 2022, 41(9): 3190-3201. |
[10] | 张璐, 毛倩瑾, 伍文文, 李润丰, 韩磊, 王子明, 崔素萍. 吸水性微胶囊界面修饰提高水泥基材料抗渗性研究[J]. 硅酸盐通报, 2022, 41(8): 2663-2671. |
[11] | 欧阳建新, 郭荣鑫, 万夫雄, 马倩敏, 杨洋. 玄武岩复合材料筋增强ECC受拉性能及裂缝控制机理[J]. 硅酸盐通报, 2022, 41(8): 2684-2695. |
[12] | 韦建刚, 陈荣, 黄伟, 陈镇东, 陈宝春, 陈培标, 朱卫东. 静水压力下超高性能混凝土的抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(8): 2706-2715. |
[13] | 张庆章, 方燕, 宋力, 徐宁, 康子寒. 混凝土孔结构及其分形维数与氯离子扩散性能的关系[J]. 硅酸盐通报, 2022, 41(8): 2716-2727. |
[14] | 孙杰, 冯川, 吴爽, 马稳, 孙明星. 持续荷载与冻融循环耦合作用下纤维混凝土损伤性能研究[J]. 硅酸盐通报, 2022, 41(8): 2728-2738. |
[15] | 张建波, 陈升平, 卢应发. FRP筋异强混凝土叠浇梁挠度与延性研究[J]. 硅酸盐通报, 2022, 41(8): 2739-2747. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||