[1] RAJ A, SATHYAN D, MINI K M. Physical and functional characteristics of foam concrete: a review[J]. Construction and Building Materials, 2019, 221: 787-799. [2] AMRAN Y H M, FARZADNIA N, ABANG ALI A A. Properties and applications of foamed concrete: a review[J]. Construction and Building Materials, 2015, 101: 990-1005. [3] 李晓英,李柱凯,高文洁.粉煤灰、渣对水泥基泡沫混凝土性能的影响[J].武汉理工大学学报,2017,39(10):9-14. LI X Y, LI Z K, GAO W J. The influence of fly ash and cinder on properties of cement based foam concrete[J]. Journal of Wuhan University of Technology, 2017, 39(10): 9-14 (in Chinese). [4] JIANG J, LU Z Y, NIU Y H, et al. Investigation of the properties of high-porosity cement foams based on ternary Portland cement-metakaolin-silica fume blends[J]. Construction and Building Materials, 2016, 107: 181-190. [5] MOUNANGA P, GBONGBON W, POULLAIN P, et al. Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes[J]. Cement and Concrete Composites, 2008, 30(9): 806-814. [6] BABU D S. Mechanical and deformational properties, and shrinkage cracking behavior of lightweight concrete[D]. Singapore: National University of Singapore, 2008. [7] CHOI Y C, CHOI S. Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions[J]. Construction and Building Materials, 2015, 99: 279-287. [8] XI B D, LI R F, ZHAO X Y, et al. Constraints and opportunities for the recycling of growing ferronickel slag in China[J]. Resources, Conservation and Recycling, 2018, 139: 15-16. [9] YANG T, YAO X, ZHANG Z H. Geopolymer prepared with high-magnesium nickel slag: characterization of properties and microstructure[J]. Construction and Building Materials, 2014, 59: 188-194. [10] RAHMAN M A, SARKER P K, SHAIKH F U A, et al. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag[J]. Construction and Building Materials, 2017, 140: 194-202. [11] SAHA A K, SARKER P K. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars[J]. Construction and Building Materials, 2016, 123: 135-142. [12] 李保亮.水泥-镍渣-锂渣二元及三元复合胶凝材料的水化机理及耐久性[D].南京:东南大学,2019. LI B L. Hydration mechanism and durability of binary and ternary composite cement incorporating ferronickel slag and lithium slag[D]. Nanjing: Southeast University, 2019 (in Chinese). [13] SUN J W, FENG J J, CHEN Z H. Effect of ferronickel slag as fine aggregate on properties of concrete[J]. Construction and Building Materials, 2019, 206: 201-209. [14] XIONG Y L, ZHU Y, CHEN C, et al. Effect of nano-alumina modified foaming agents on properties of foamed concrete[J]. Construction and Building Materials, 2021, 267: 121045. [15] 中华人民共和国住房和城乡建设部.泡沫混凝土:JG/T 266—2011[S].北京:中国标准出版社,2011. Ministry of Housing and Urban-Rural Development, PRC. Foam concrete: JG/T 266—2011[S]. Beijing: Standards Press of China, 2011 (in Chinese). [16] 国家市场监督管理总局,国家标准化管理委员会.蒸压加气混凝土性能试验方法:GB/T 11969—2020[S].北京:中国标准出版社,2020. State Administration for Market Regulation, Standardization Administration. Test method for performance of autoclaved aerated concrete: GB/T 11969—2020[S]. Beijing: Standards Press of China, 2020 (in Chinese). [17] American Society for Testing and Materials. Standard test method for autogenous strain of cement paste and mortar: ASTM C1698—19[S]. 2019. [18] WANG L, ZHOU S H, SHI Y, et al. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete[J]. Composites Part B: Engineering, 2017, 130: 28-37. [19] 中国土木工程学会.混凝土结构耐久性设计与施工指南:CCES 01—2004[S].北京:中国建筑工业出版社,2004. China Civil Engineering Society. Guide for durability design and construction of concrete structures: CCES 01—2004[S]. Beijing: China Architecture and Architecture Press, 2004 (in Chinese). [20] 中国建筑材料工业协会.水泥砂浆抗裂性能试验研究:JCT 951—2018[S].北京:中国建筑工业出版社,2018. China Building Material Council. Test method for cracking resistance of cement mortar: JCT 951—2018[S]. Beijing: China Construction Industry Press, 2018 (in Chinese). [21] 刘中炜,赵 康,汤玉斐,等.轻骨料对泡沫混凝土性能的影响[J].新型建筑材料,2019,46(10):19-23+38. LIU Z W, ZHAO K, TANG Y F, et al. Effects of light-weight aggregate on performance of foamed concrete[J]. New Building Materials, 2019, 46(10): 19-23+38 (in Chinese). [22] GANJIAN E, KHORAMI M, MAGHSOUDI A A. Scrap-tyre-rubber replacement for aggregate and filler in concrete[J]. Construction and Building Materials, 2009, 23(5): 1828-1836. [23] SIDDIQUE R, NAIK T R. Properties of concrete containing scrap-tire rubber: an overview[J]. Waste Management, 2004, 24(6): 563-569. [24] ZHANG Y, DA CHEN, LIANG Y C, et al. Study on engineering properties of foam concrete containing waste seashell[J]. Construction and Building Materials, 2020, 260: 119896. [25] RAO G A. Long-term drying shrinkage of mortar: influence of silica fume and size of fine aggregate[J]. Cement and Concrete Research, 2001, 31(2): 171-175. |