[1] 张利珍,赵恒勤,马化龙,等.我国矿山固体废物的资源化利用及处置[J].现代矿业,2012,27(10):1-5. ZHANG L Z, ZHAO H Q, MA H L, et al. Resource utilization and disposal of mine solid waste in China[J]. Modern Mining, 2012, 27(10): 1-5 (in Chinese). [2] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299-327. [3] 孔令炜.碱激发胶凝材料研究现状及未来发展[J].四川水泥,2015(11):91. KONG L W. Research status and future development of alkali activated cementitious materials[J]. Sichuan Cement, 2015(11): 91 (in Chinese). [4] 麻鹏飞,杨 文,程宝军,等.碱激发磷石膏复合胶凝材料力学性能研究[J].混凝土与水泥制品,2021(8):83-87. MA P F, YANG W, CHENG B J, et al. Study on mechanical properties of alkali activated phosphogypsum composite cementitious materials[J]. China Concrete and Cement Products, 2021(8): 83-87 (in Chinese). [5] 孙双月,蔡 靖.利用铅锌冶炼废渣制备碱激发胶凝材料的实验研究[J].广东化工,2016,43(5):39-40. SUN S Y, CAI J. Preparation of alkali-activated cementitious materials utilizing lead or zinc smelting slag[J]. Guangdong Chemical Industry, 2016, 43(5): 39-40 (in Chinese). [6] 孙双月,牛丽红,王 聪.铅锌冶炼废渣和尾矿制备地聚合物的研究[J].中国矿业,2015,24(7):48-52. SUN S Y, NIU L H, WANG C. Geopolymer synthesis by utilizing lead or zinc smelting slag and its tailing as raw materials[J]. China Mining Magazine, 2015, 24(7): 48-52 (in Chinese). [7] 王生辉.铅锌尾矿-冶炼渣复合胶凝材料的制备及性能研究[D].桂林:桂林理工大学,2020. WANG S H. Lead-zinc tailings-smelting slag composite cementing material preparation and performance research[D]. Guilin: Guilin University of Technology, 2020 (in Chinese). [8] NATH S K, MUKHERJEE S, MAITRA S, et al. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(3): 1953-1961. [9] 孔德玉,张俊芝,倪彤元,等.碱激发胶凝材料及混凝土研究进展[J].硅酸盐学报,2009,37(1):151-159. KONG D Y, ZHANG J Z, NI T Y, et al. Research progress on alkali-activated binders and concrete[J]. Journal of the Chinese Ceramic Society, 2009, 37(1): 151-159 (in Chinese). [10] 王梦婵,张惠灵,陈永亮,等.利用低硅铁尾矿制备地质聚合物的研究[J].中国矿业,2019,28(8):170-176. WANG M C, ZHANG H L, CHEN Y L, et al. Utilization of low-silicon iron tailings for the preparation of geopolymers[J]. China Mining Magazine, 2019, 28(8): 170-176 (in Chinese). [11] 党海笑,张金喜,王建刚.水玻璃模数对碱激发赤泥胶凝材料性能影响研究[J].有色金属(冶炼部分),2020(9):115-119+126. DANG H X, ZHANG J X, WANG J G. Effect of sodium silicate modulus on properties of red mud alkali-activated cementitious materials[J]. Nonferrous Metals (Extractive Metallurgy), 2020(9): 115-119+126 (in Chinese). [12] 付万长,蔡基伟,史俊礼,等.化学与热处理法对金尾矿胶凝活性的激发[J].硅酸盐通报,2020,39(8):2542-2548. FU W Z, CAI J W, SHI J L, et al. Chemical and thermal activation of reactivity of gold tailings as a supplementary cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2542-2548 (in Chinese). [13] 赵留成,孙春宝,张舒婷,等.主要载金硫化物黄铁矿的热分解动力学特性[J].中国有色金属学报,2015,25(8):2212-2217. ZHAO L C, SUN C B, ZHANG S T, et al. Characteristic of thermal decomposition kinetics of main gold-bearing sulfides pyrite[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(8): 2212-2217 (in Chinese). [14] 马先伟,董恩来,张 程,等.铝矾土尾矿的热活化效果[J].材料科学与工程学报,2021,39(3):420-425. MA X W, DONG E L, ZHANG C, et al. Thermal activation effectiveness of bauxite tailings[J]. Journal of Materials Science and Engineering, 2021, 39(3): 420-425 (in Chinese). [15] 侯双明,高 嵩,张 蕾,等.热活化和机械活化对拜耳法赤泥性能影响[J].硅酸盐通报,2020,39(5):1573-1577. HOU S M, GAO S, ZHANG L, et al. Effects of thermal and mechanical activation on properties of bayer red mud[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1573-1577 (in Chinese). [16] 彭小芹,刘 朝,李 三,等.碱激发钢渣矿渣胶凝材料凝结硬化性能研究[J].湖南大学学报(自然科学版),2015,42(6):47-52. PENG X Q, LIU C, LI S, et al. Research on the setting and hardening performance of alkali-activated steel slag-slag based cementitious materials[J]. Journal of Hunan University (Natural Sciences), 2015, 42(6): 47-52 (in Chinese). [17] 王 旻.碱激发胶凝材料的反应产物[J].硅酸盐学报,2009,37(7):1130-1136. WANG M. Reaction products of alkali-activated cementing material[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1130-1136 (in Chinese). [18] CUI X M, ZHENG G J, HAN Y C, et al. A study on electrical conductivity of chemosynthetic Al2O3-2SiO2 geoploymer materials[J]. Journal of Power Sources, 2008, 184(2): 652-656. [19] XU H, VAN DEVENTER J S J. The geopolymerisation of alumino-silicate minerals[J]. International Journal of Mineral Processing, 2000, 59(3): 247-266. [20] NGUYEN H T. Evaluation on formation of aluminosilicate network in ternary-blended geopolymer using infrared spectroscopy[J]. Solid State Phenomena, 2019, 296: 99-104. [21] RAHMAN A S, RADFORD D W. Evaluation of the geopolymer/nanofiber interfacial bond strength and their effects on Mode-I fracture toughness of geopolymer matrix at high temperature[J]. Composite Interfaces, 2017, 24(8): 817-831. [22] 王 磊,何 真,张 博,等.基于红外与核磁共振技术揭示C-S-H聚合机理[J].建筑材料学报,2011,14(4):447-451+458. WANG L, HE Z, ZHANG B, et al. Polymerization mechanism of C-S-H: identified by FTIR and NMR[J]. Journal of Building Materials, 2011, 14(4): 447-451+458 (in Chinese). [23] CHEN J J, THOMAS J J, JENNINGS H M. Decalcification shrinkage of cement paste[J]. Cement and Concrete Research, 2006, 36(5): 801-809. [24] 王 菲,刘 泽,韩 乐,等.活化煤矸石地质聚合物的制备与性能研究[J].硅酸盐通报,2021,40(3):914-920. WANG F, LIU Z, HAN L, et al. Preparation and properties of activated coal gangue geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 914-920 (in Chinese). [25] ZHUANG X Y, CHEN L, KOMARNENI S, et al. Fly ash-based geopolymer: clean production, properties and applications[J]. Journal of Cleaner Production, 2016, 125: 253-267. [26] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. |