[1] XU X H, LAO X B, WU J F, et al. Microstructural evolution, phase transformation, and variations in physical properties of coal series kaolin powder compact during firing[J]. Applied Clay Science, 2015, 115: 76-86. [2] XIE X K, NIU S X, MIAO Y, et al. Preparation and properties of resin coated ceramic proppants with ultra light weight and high strength from coal-series kaolin[J]. Applied Clay Science, 2019, 183: 105364. [3] BUNDY W M, ISHLEY J N. Kaolin in paper filling and coating[J]. Applied Clay Science, 1991, 5(5/6): 397-420. [4] 孙 涛,周春宇,陈洁渝,等.煤系煅烧高岭土吸油值的影响因素[J].岩石矿物学杂志,2013,32(2):232-238. SUN T, ZHOU C Y, CHEN J Y, et al. Factors influencing oil adsorption of calcined coal-series kaolin[J]. Acta Petrologica et Mineralogica, 2013, 32(2): 232-238 (in Chinese). [5] 闫 雷.煅烧煤系高岭土吸油性能影响因素的研究[D].太原:太原理工大学,2021:6-7. YAN L. Study on the factors affecting the oil absorption performance of calcined coal series kaolin[D]. Taiyuan: Taiyuan University of Technology, 2021: 6-7 (in Chinese). [6] KHOKHANI A, YILDIRIM I, BERUBE R, et al. Pigment for paper and coatings: US10253186[P]. 2019-04-09. [7] HEN J, YOUNG R, GINEZ A, et al. Low sheen opacifying pigments and manufacture thereof by calcination of kaolin clay: US6136086[P]. 2000-10-24. [8] 孔德顺.煤系高岭土及其应用研究进展[J].化工技术与开发,2014,43(7):39-41. KONG D S. Research progress of coal series kaolin and its applications[J]. Technology Development of Chemical Industry, 2014, 43(7): 39-41 (in Chinese). [9] 郑水林,李 杨,许 霞.温度对煤系煅烧高岭土物化性能影响的研究[J].硅酸盐学报,2003,31(4):417-420. ZHENG S L, LI Y, XU X. Study of effects of temperature on the physical and chemical properties of calcined kaolinite[J]. Journal of the Chinese Ceramic Society, 2003, 31(4): 417-420 (in Chinese). [10] 闫 雷,张 涛,黎佳全,等.微波辐照煤系高岭土及其吸油性能[J].硅酸盐通报,2021,40(2):527-533. YAN L, ZHANG T, LI J Q, et al. Microwave irradiated coal series kaolin and its oil absorption performance[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 527-533 (in Chinese). [11] 王玉飞.碱改性高岭土的吸油性能研究[J].榆林学院学报,2011,21(4):82-86. WANG Y F. Study on oil absorptive properties of alkali-modified kaolin[J]. Journal of Yulin University, 2011, 21(4): 82-86 (in Chinese). [12] BULUT B, UNAL F, BAYDOGAN M, et al. Effect of particle morphology on physical, mechanical and wear properties of cobalt metal powders[J]. Transactions of the Indian Institute of Metals, 2021, 74(9): 2345-2355. [13] KONG F Q, QIE Y Q, LIU Y X, et al. Magnetic properties and electrocatalytic properties of Fe5C2 particles with different morphologies[J]. Journal of Materials Science: Materials in Electronics, 2021, 33(2), 33: 884-893. [14] YAN J F, ZHANG Z Y, YOU T G, et al. Effect of polyacrylamide on morphology and electromagnetic properties of chrysanthemum-like ZnO particles[J]. Chinese Physics B, 2009, 18(10): 4552-4557. [15] MOSTAFA R A, BELAL M B, ALYAA A, et al. Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water[J]. Journal of Hazardous Materials, 2019, 374(15): 296-308. [16] CHEN C Y, LAN G S, TUAN W H. Microstructural evolution of mullite during the sintering of kaolin powder compacts[J]. Ceramics International, 2000, 26(7): 715-720. [17] CHEN Y F, WANG M C, HON M H. Transformation kinetics for mullite in kaolin-Al2O3 ceramics[J]. Journal of Materials Research, 2003, 18(6): 1355-1362. [18] RASHAD M, BALASUBRAMANIAN M. Characteristics of porous mullite developed from clay and AlF3·3H2O[J]. Journal of the European Ceramic Society, 2018, 38(10): 3673-3680. [19] RASHAD M, SABU U, LOGESH G, et al. Mullite phase evolution in clay with hydrated or anhydrous AlF3[J]. Journal of the European Ceramic Society, 2020, 40(15): 5974-5983. [20] SCHROEDER P A, PRUETT R J, MELEAR N D. Crystal-chemical changes in an oxidative weathering front in a georgia kaolin deposit[J]. Clays and Clay Minerals, 2004, 52(2): 211-220. [21] LI J F, LIN H, LI J B, et al. Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite[J]. Journal of the European Ceramic Society, 2009, 29(14): 2929-2936. [22] DE SARABIA E R F, GALLEGO-JUÁREZ J A. Ultrasonic agglomeration of micron aerosols under standing wave conditions[J]. Journal of Sound and Vibration, 1986, 110(3): 413-427. |