[1] 高宗军,李怀岭,李华民.河砂资源过度开采对水环境的破坏暨环境地质问题:以山东大汶河河砂开采为例[J].中国地质灾害与防治学报,2003,14(3):96-99. GAO Z J, LI H L, LI H M. The negative effects on water environment and environ-geological problems from excessive exploitation of river sand resources[J]. The Chinese Journal of Geological Hazard and Control, 2003, 14(3): 96-99 (in Chinese). [2] 文自桢,马少立,段 平.纳米碳酸钙的合成、改性以及应用进展[J].江西建材,2021(8):2-4+6. WEN Z Z, MA S L, DUAN P. Synthesis, modification and application progress of nanometer calcium carbonate[J]. Jiangxi Building Materials, 2021(8): 2-4+6 (in Chinese). [3] 莫利伟.混凝土中固化态氯离子失稳特性的研究[D].宁波:宁波大学,2014. MO L W. Reseach of the instability features of the binded chloride ions in concrete[D]. Ningbo: Ningbo University, 2014 (in Chinese). [4] TANG L P, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2): 247-253. [5] MEHTA P K. Effect of cement composition on corrosion of reinforcing steel in concrete[C]. Third International Symposium on Corrosion of Reinforcement in Concrete Construciton, 1990. [6] HUSSIAN S E, ALSAADOUN S. Effect of tricalcium aluminate content of cement on chloride binding corrosion of reinforcing steel in concrete[J]. ACI Materials Journal, 1993, 89(1): 3-12. [7] BEN-YAIR M. The effect of chlorides on concrete in hot and arid regions[J]. Cement and Concrete Research, 1974, 4(3): 405-416. [8] CSIZMADIA J, BALÁZS G, TAMÁS F D. Chloride ion binding capacity of aluminoferrites[J]. Cement and Concrete Research, 2001, 31(4): 577-588. [9] DHIR R K, EL-MOHR M A K, DYER T D. Chloride binding in GGBS concrete[J]. Cement and Concrete Research, 1996, 26(12): 1767-1773. [10] 李固华,高 波.纳米CaCO3对砼耐干湿循环腐蚀性能的影响[J].重庆交通学院学报,2007,26(2):131-135. LI G H, GAO B. Effect of NM level CaCO3 on performance of the concrete in drying-wetting cycle in corrosive environments[J]. Journal of Chongqing Jiaotong University, 2007, 26(2): 131-135 (in Chinese). [11] LIU X Y, CHEN L, LIU A H, et al. Effect of nano-CaCO3 on properties of cement paste[J]. Energy Procedia, 2012, 16: 991-996. [12] SATO T, BEAUDOIN J J. Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials[J]. Advances in Cement Research, 2011, 23(1): 33-43. [13] 魏荟荟.纳米CaCO3对水泥基材料的影响及作用机理研究[D].哈尔滨:哈尔滨工业大学,2013. WEI H H. Study on effect and mechanism of nano-CaCO3 in cement-based materials[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). [14] 李秋超,范颖芳.几种纳米水泥砂浆氯离子渗透性对比试验研究[J].混凝土,2021(2):96-100+105. LI Q C, FANG Y F. Comparative experimental study of chloride ion permeability of several nano-cement mortars[J]. Concrete, 2021(2): 96-100+105 (in Chinese). [15] GAO W, DING L L, ZHU Y C. Effect of surface modification on the dispersion, thermal stability and crystallization properties of PET/CaCO3 nanocomposites[J]. Tenside Surfactants Detergents, 2017, 54(3): 230-237. [16] 史建明.纳米碳酸钙的分散和聚合物包覆[D].杭州:浙江大学,2005. SHI J M. Dispersion and encapsulation of nanometer calcium carbonate with polymer[D]. Hangzhou: Zhejiang University, 2005 (in Chinese). [17] DOUSTI A, BEAUDOIN J J, SHEKARCHI M. Chloride binding in hydrated MK, SF and natural zeolite-lime mixtures[J]. Construction and Building Materials, 2017, 154: 1035-1047. [18] ZIBARA H, HOOTON R D, THOMAS M D A, et al. Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures[J]. Cement and Concrete Research, 2008, 38(3): 422-426. [19] THOMAS M D A, HOOTON R D, SCOTT A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1): 1-7. [20] 黎均权.超低水胶比水泥基材料中氯离子迁移及其结合规律的研究[D].长沙:湖南大学,2019. LI J Q. Study of chloride migration and chloride binding isotherms in cement-based materials with ultra-low water to binder ratio[D]. Changsha: Hunan University, 2019 (in Chinese). [21] 罗 睿,蔡跃波,王昌义.磨细矿渣净浆和砂浆结合外渗氯离子的性能[J].建筑材料学报,2001,4(2):148-153. LUO R, CAI Y B, WANG C Y. Binding capability of chloride ions in mortar and paste with ground granulated blast furnace slag[J]. Journal of Building Materials, 2001, 4(2): 148-153 (in Chinese). [22] 翁智财,余红发,孙 伟,等.水灰比与水泥用量对混凝土Cl-结合能力的影响[J].武汉理工大学学报,2006,28(3):47-50. WENG Z C, YU H F, SUN W, et al. Influence of water-cement ratio and cement content on chloride binding capacity of concrete[J]. Journal of Wuhan University of Technology, 2006, 28(3): 47-50 (in Chinese). [23] DHIR R K, EL-MOHR M A K, DYER T D. Developing chloride resisting concrete using PFA[J]. Cement and Concrete Research, 1997, 27(11): 1633-1639. [24] ZIBARA H. Binding of external chloride by cement pastes[D]. Toronto University of Toronto, 2001. [25] 谢友均,陈书苹,龙广成.改善水泥浆体结合氯离子性能的试验研究[J].铁道科学与工程学报,2007,4(2):1-5. XIE Y J, CHEN S P, LONG G C. Experimental study on improvement of chloride ion binding of cement paste[J]. Journal of Railway Science and Engineering, 2007, 4(2): 1-5 (in Chinese). [26] ELAKNESWARAN Y, NAWA T, KURUMISAWA K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides[J]. Cement and Concrete Research, 2009, 39(4): 340-344. [27] TUUTTI K. Analysis of pore solution squeezed out of cement paste and mortar[J]. Nordic Concrete Research, 1983, 1: 16. [28] MARTÍN-PÉREZ B, ZIBARA H, HOOTON R D, et al. A study of the effect of chloride binding on service life predictions[J]. Cement and Concrete Research, 2000, 30(8): 1215-1223. [29] 王子玮.活性粉末混凝土抗氯离子侵蚀渗透性能研究[D].北京:北京交通大学,2011. WANG Z W. Study on anti-chloride ion penetration of RPC[D]. Beijing: Beijing Jiaotong University, 2011 (in Chinese). [30] 余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].南京:东南大学,2004. YU H F. Study on high performance concrete in salt lake: durability, mechanism and service life prediction[D]. Nanjing: Southeast University, 2004 (in Chinese). [31] MENG T, YU Y, WANG Z J. Effect of nano-CaCO3 slurry on the mechanical properties and micro-structure of concrete with and without fly ash[J]. Composites Part B: Engineering, 2017, 117: 124-129. [32] NILSSON L, MASSAT M, TANG L. Effect of non-linear chloride binding on the prediction of chloride penetration into concrete structures[J]. Special Publication, 1994, 145: 469-486. [33] 王一木.混凝土氯离子吸附问题及寿命预测研究[D].哈尔滨:哈尔滨工程大学,2017. WANG Y M. Research on chloride binding problem and life prediction of concrete[D]. Harbin: Harbin Engineering University, 2017 (in Chinese). [34] 钱匡亮,张津践,钱晓倩,等.纳米CaCO3中间体对水泥基材料性能的影响[J].材料科学与工程学报,2011,29(5):692-697. QIAN K L, ZHANG J J, QIAN X Q, et al. Effects of nano-CaCO3 intermediate on physical and mechanical properties of cement-based materials[J]. Journal of Materials Science and Engineering, 2011, 29(5): 692-697 (in Chinese). [35] 孟 涛,钱匡亮,钱晓倩,等.纳米碳酸钙颗粒对水泥水化性能和界面性质的影响[J].稀有金属材料与工程,2008,37(s2):667-669. MENG T, QIAN K L, QIAN X Q, et al. Effect of the nano-CaCO3 on hydrated properties and interface of cement paste[J]. Rare Metal Materials and Engineering, 2008, 37(s2): 667-669 (in Chinese). [36] MONTEIRO P J M, WANG K, SPOSITO G, et al. Influence of mineral admixtures on the alkali-aggregate reaction[J]. Cement and Concrete Research, 1997, 27(12): 1899-1909. |