[1] COLLEPARDI M, MARCIALIS A, TURRIZIANI R. Penetration of chloride ions into cement pastes and concretes[J]. Journal of the American Ceramic Society, 1972, 55(10): 534-535. [2] 陆春华,刘荣桂,崔钊玮,等.干湿交替作用下受弯开裂钢筋混凝土梁内氯离子侵蚀特性[J].土木工程学报,2014,47(12):82-90. LU C H, LIU R G, CUI Z W, et al. Study on chloride penetration into flexural cracked reinforced concrete beams subjected to drying-wetting cycles[J]. China Civil Engineering Journal, 2014, 47(12): 82-90 (in Chinese). [3] FARAHANI A, TAGHADDOS H, SHEKARCHI M. Prediction of long-term chloride diffusion in silica fume concrete in a marine environment[J]. Cement and Concrete Composites, 2015, 59: 10-17. [4] 於德美,关博文,申爱琴,等.非饱和混凝土氯离子传输模型及参数分析[J].硅酸盐通报,2017,36(4):1130-1135. YU D M, GUAN B W, SHEN A Q, et al. Chloride transport model and parameter analysis of unsaturated concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1130-1135 (in Chinese). [5] 申 林,陈定市,李万恒,等.非饱和混凝土氯离子传输细观研究[J].华南理工大学学报(自然科学版),2018,46(11):76-82. SHEN L, CHEN D S, LI W H, et al. Mesoscopic research on chloride ion transport in unsaturated concrete[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(11): 76-82 (in Chinese). [6] 李荣涛.对流效应对氯离子侵蚀混凝土过程的影响[J].科学技术与工程,2021,21(12):5066-5070. LI R T. Effect of convection on chloride penetration in concrete[J]. Science Technology and Engineering, 2021, 21(12): 5066-5070 (in Chinese). [7] ANDRADE C, CLIMENT M A, DE VERA G. Procedure for calculating the chloride diffusion coefficient and surface concentration from a profile having a maximum beyond the concrete surface[J]. Materials and Structures, 2015, 48(4): 863-869. [8] MATTHEWS S, UEDA T, VLIET A V. Conservation of concrete structures in fib model code 2010[M]. Precast Prestressed Concrete Institute, 2010. [9] 陆春华,刘荣桂,崔钊玮,等.开裂状态下沿海干湿区桥梁粉煤灰混凝土氯离子扩散模型[J].中国公路学报,2015,28(8):40-49. LU C H, LIU R G, CUI Z W, et al. Chloride diffusion model in cracked fly ash concrete bridge subjected to coastal drying-wetting cycles[J]. China Journal of Highway and Transport, 2015, 28(8): 40-49 (in Chinese). [10] DURACRETE P. General guidelines for durability design and redesign[J]. The European Union-Brite Eu Ram III, Project No BE95-1347:‘Probabilistic Performance Based Durability Design of Concrete Structures’, 2000, 15(6): 57-63. [11] 冯 超,於德美,关博文,等.非饱和混凝土氯离子传输模型及特性分析[J].硅酸盐通报,2017,36(1):8-13. FENG C, YU D M, GUAN B W, et al. Chloride transport model and properties analysis of unsaturated concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1): 8-13 (in Chinese). [12] GAO Y H, ZHANG J Z, ZHANG S, et al. Probability distribution of convection zone depth of chloride in concrete in a marine tidal environment[J]. Construction and Building Materials, 2017, 140: 485-495. [13] 高延红,赵 静,郑盈盈,等.模拟自然潮差环境混凝土氯离子侵蚀对流区深度的相似性与随机性[J].自然灾害学报,2018,27(5):63-69. GAO Y H, ZHAO J, ZHENG Y Y, et al. Similarity and randomness of convection zone depth of chloride in concrete under simulated tidal environment[J]. Journal of Natural Disasters, 2018, 27(5): 63-69 (in Chinese). [14] 庞 森,陈树鑫.干湿交替环境下铁路钢筋混凝土桥梁中氯离子迁移规律研究[J].铁路工程技术与经济,2020,35(3):18-21. PANG S, CHEN S X. Study on chloride ion migration in railway reinforced concrete bridges dry and wet cycling environment[J]. Railway Engineering Technology and Economy, 2020, 35(3): 18-21 (in Chinese). [15] 崔钊玮,刘荣桂,陆春华,等.干湿循环与受弯裂缝共同作用下海工砼梁内氯离子侵蚀及耐久性寿命预测[J].硅酸盐通报,2020,39(2):344-351. CUI Z W, LIU R G, LU C H, et al. Chloride ion erosion and durability life prediction of marine concrete beams under combined action of dry-wet cycle and flexural cracks[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 344-351 (in Chinese). [16] KWAN A K H, NG P L, WANG Z M. Mesoscopic analysis of crack propagation in concrete by nonlinear finite element method with crack queuing algorithm[J]. Procedia Engineering, 2017, 172: 620-627. [17] 李春秋,李克非.干湿交替下表层混凝土中水分传输:理论、试验和模拟[J].硅酸盐学报,2010,38(7):1151-1159. LI C Q, LI K F. Moisture transport in concrete cover under drying-wetting cycles: theory, experiment and modeling[J]. Journal of the Chinese Ceramic Society, 2010, 38(7): 1151-1159 (in Chinese). [18] LESKOVEK U, MEDVED S. Heat and moisture transfer in fibrous thermal insulation with tight boundaries and a dynamical boundary temperature[J]. International Journal of Heat and Mass Transfer, 2011, 54(19/20): 4333-4340. [19] 刘 鹏.人工模拟和自然氯盐环境下混凝土氯盐侵蚀相似性研究[D].长沙:中南大学,2013. LIU P. Research on similarity of the chloride ingress in concrete under natural and artifical simulation environment[D]. Changsha: Central South University, 2013 (in Chinese). [20] 徐 可.不同干湿制度下混凝土中氯盐传输特性研究[D].宜昌:三峡大学,2012. XU K. Properties of chloride ions transportion in concrete under different drying-wetting cycles[D]. Yichang: China Three Gorges University, 2012 (in Chinese). |