硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (4): 1454-1463.
李航, 廖建国, 马婷婷, 冯锦伦
收稿日期:
2021-11-23
修回日期:
2021-12-25
出版日期:
2022-04-15
发布日期:
2022-04-27
通讯作者:
廖建国,副教授。E-mail:liaojianguo10@hpu.edu.cn
作者简介:
李 航(1996—),女,硕士研究生。主要从事生物材料的研究。E-mail:lihanghpu123@163.com
基金资助:
LI Hang, LIAO Jianguo, MA Tingting, FENG Jinlun
Received:
2021-11-23
Revised:
2021-12-25
Online:
2022-04-15
Published:
2022-04-27
摘要: 由创伤、肿瘤和感染等原因引起的骨缺损通常面积较大,超过了骨自愈范围而不能自修复。因此,需要使用骨水泥对面积较大的骨缺损部位进行填充修复。磷酸钙水泥(calcium phosphate cement, CPC)是目前临床常用的一种骨水泥,可任意塑形,具有良好生物活性和生物相容性,近几十年来得到国内外学者的广泛研究。然而,从临床实践经验来看,CPC的应用范围有限,仍需要对其进行性能改进。本文主要分为两部分:在理化性能部分总结了CPC在力学强度、可注射性、抗溃散性和放射不透明性等四方面的改性方法;在生物学性能方面讨论了CPC成骨活性、生物可降解性和载药性方面的改性研究。
中图分类号:
李航, 廖建国, 马婷婷, 冯锦伦. 钙-磷系自固化材料改性研究进展[J]. 硅酸盐通报, 2022, 41(4): 1454-1463.
LI Hang, LIAO Jianguo, MA Tingting, FENG Jinlun. Research Progress on Modification of Calcium-Phosphorus Self-Curing Material[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(4): 1454-1463.
[1] YOUSEFI A M. A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation[J]. Journal of Applied Biomaterials & Functional Materials, 2019, 17(4): 2280800019872594. [2] HOESS A, LÓPEZ A, ENGQVIST H, et al. Comparison of a quasi-dynamic and a static extraction method for the cytotoxic evaluation of acrylic bone cements[J]. Materials Science and Engineering: C, 2016, 62: 274-282. [3] LEWIS G. Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2017, 105(5): 1260-1284. [4] XU D R, SONG W L, ZHANG J, et al. Osteogenic effect of polymethyl methacrylate bone cement with surface modification of lactoferrin[J]. Journal of Bioscience and Bioengineering, 2021, 132(2): 132-139. [5] BOHNER M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements[J]. Injury, 2000, 31: D37-D47. [6] SARKAR M R, WACHTER N, PATKA P, et al. First histological observations on the incorporation of a novel calcium phosphate bone substitute material in human cancellous bone[J]. Journal of Biomedical Materials Research, 2001, 58(3): 329-334. [7] OOMS E M, WOLKE J G C, VAN DE HEUVEL M T, et al. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone[J]. Biomaterials, 2003, 24(6): 989-1000. [8] PALMER I, NELSON J, SCHATTON W, et al. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study[J]. Journal of Materials Science Materials in Medicine, 2016, 27(12): 191. [9] 张 磊,唐晓菊,黄有荣,等.聚甲基丙烯酸甲酯骨水泥及磷酸钙骨水泥的材料性能及改性的研究进展[J].广西医学,2019,41(16):2114-2118+2122. ZHANG L, TANG X J, HUANG Y R, et al. Research progress of properties and modification of polymethyl methacrylate and calcium phosphate cement bone cement materials[J]. Guangxi Medical Journal, 2019, 41(16): 2114-2118+2122 (in Chinese). [10] GISEP A, KUGLER S, WAHL D, et al. Mechanical characterisation of a bone defect model filled with ceramic cements[J]. Journal of Materials Science Materials in Medicine, 2004, 15(10): 1065-1071. [11] ROY A, JHUNJHUNWALA S, BAYER E, et al. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: a viable tunable drug delivery system[J]. Materials Science and Engineering: C, 2016, 59: 92-101. [12] LIU J Q, LI J Y, YE J D, et al. Setting behavior, mechanical property and biocompatibility of anti-washout wollastonite/calcium phosphate composite cement[J]. Ceramics International, 2016, 42(12): 13670-13681. [13] ZHANG J, WU H E, HE F P, et al. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions[J]. Materials Science and Engineering: C, 2019, 99: 1199-1212. [14] XIA Y, GUO Y, YANG Z K, et al. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling[J]. Materials Science and Engineering: C, 2019, 104: 109955. [15] LIN Z F, CAO Y N, ZOU J M, et al. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement[J]. Materials Science and Engineering: C, 2020, 114: 111032. [16] ZHANG Q C, LEI Z L, PENG M X, et al. Enhancement of mechanical and biological properties of calcium phosphate bone cement by incorporating bacterial cellulose[J]. Materials Technology, 2019, 34(13): 800-806. [17] LI G D, ZHANG K L, PEI Z J, et al. Basalt fibre reinforced calcium phosphate cement with enhanced toughness[J]. Materials Technology, 2020, 35(3): 152-158. [18] PETRE D G, NADAR R, TU Y F, et al. Thermoresponsive brushes facilitate effective reinforcement of calcium phosphate cements[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26690-26703. [19] 黄 萍,李 鹏,赵军胜,等.机械活化增强多孔磷酸钙骨水泥支架的研究[J].无机材料学报,2015,30(4):432-438. HUANG P, LI P, ZHAO J S, et al. Mechanical activation reinforced porous calcium phosphate cement[J]. Journal of Inorganic Materials, 2015, 30(4): 432-438 (in Chinese). [20] WANG S, SUN X N, WANG Y P, et al. Properties of reduced graphene/carbon nanotubes reinforced calcium phosphate bone cement in a microwave environment[J]. Journal of Materials Science: Materials in Medicine, 2019, 30(3): 37. [21] RAJEH M A, DIAZ J J H, FACCA S, et al. Treatment of hand enchondroma with injectable calcium phosphate cement: a series of eight cases[J]. European Journal of Orthopaedic Surgery & Traumatology: Orthopedie Traumatologie, 2017, 27(2): 251-254. [22] BOHNER M, BAROUD G. Injectability of calcium phosphate pastes[J]. Biomaterials, 2005, 26(13): 1553-1563. [23] HURLE K, WEICHHOLD J, BRUECKNER M, et al. Hydration mechanism of a calcium phosphate cement modified with phytic acid[J]. Acta Biomaterialia, 2018, 80: 378-389. [24] NEZAFATI N, FAROKHI M, HEYDARI M, et al. In vitro bioactivity and cytocompatablity of an injectable calcium phosphate cement/silanated gelatin microsphere composite bone cement[J]. Composites Part B: Engineering, 2019, 175: 107146. [25] AMIRIAN J, MAKKAR P, LEE G H, et al. Incorporation of alginate-hyaluronic acid microbeads in injectable calcium phosphate cement for improved bone regeneration[J]. Materials Letters, 2020, 272: 127830. [26] KREBS J, AEBLI N, GOSS B G, et al. Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2007, 82(2): 526-532. [27] AN J, WOLKE J G C, JANSEN J A, et al. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements[J]. Journal of Materials Science Materials in Medicine, 2016, 27(3): 58. [28] QIAN G W, LI X M, HE F P, et al. Improvement of anti-washout property of calcium phosphate cement by addition of konjac glucomannan and guar gum[J]. Journal of Materials Science: Materials in Medicine, 2018, 29(12): 183. [29] LEE H J, KIM B, PADALHIN A R, et al. Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material[J]. Materials Science and Engineering: C, 2019, 94: 385-392. [30] LODOSO-TORRECILLA I, STUMPEL F, JANSEN J A, et al. Early-stage macroporosity enhancement in calcium phosphate cements by inclusion of poly(N-vinylpyrrolidone) particles as a porogen[J]. Materials Today Communications, 2020, 23: 100901. [31] LIU H L, ZHANG Z Y, GAO C X, et al. Enhancing effects of radiopaque agent BaSO4 on mechanical and biocompatibility properties of injectable calcium phosphate composite cement[J]. Materials Science and Engineering: C, 2020, 116: 110904. [32] LE FERREC M, MELLIER C, BOUKHECHBA F, et al. Design and properties of a novel radiopaque injectable apatitic calcium phosphate cement, suitable for image-guided implantation[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2018, 106(8): 2786-2795. [33] WU T T, YANG S E, SHI H S, et al. Preparation and cytocompatibility of a novel bismuth aluminate/calcium phosphate cement with high radiopacity[J]. Journal of Materials Science Materials in Medicine, 2018, 29(9): 149. [34] FILLINGHAM Y, JACOBS J. Bone grafts and their substitutes[J]. The Bone & Joint Journal, 2016, 98-B(1 Suppl A): 6-9. [35] SENGUPTA S, PARK S H, PATEL A, et al. Hypoxia and amino acid supplementation synergistically promote the osteogenesis of human mesenchymal stem cells on silk protein scaffolds[J]. Tissue Engineering Part A, 2010, 16(12): 3623-3634. [36] SHI H S, YE X L, HE F P, et al. Improving osteogenesis of calcium phosphate bone cement by incorporating with lysine: an in vitro study[J]. Colloids and Surfaces B: Biointerfaces, 2019, 177: 462-469. [37] TUO Y H, GUO X L, ZHANG X X, et al. The biological effects and mechanisms of calcitonin gene-related peptide on human endothelial cell[J]. Journal of Receptors and Signal Transduction, 2013, 33(2): 114-123. [38] LV T C, LIANG W, LI L, et al. Novel calcitonin gene-related peptide/chitosan-strontium-calcium phosphate cement: enhanced proliferation of human umbilical vein endothelial cells in vitro[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2019, 107(1): 19-28. [39] FONG L, TAN K, TRAN C, et al. Interaction of dietary zinc and intracellular binding protein metallothionein in postnatal bone growth[J]. Bone, 2009, 44(6): 1151-1162. [40] LI H, CHANG J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect[J]. Acta Biomaterialia, 2013, 9(6): 6981-6991. [41] HORIUCHI S, HIASA M, YASUE A, et al. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29: 151-160. [42] XIONG K, ZHANG J, ZHU Y Y, et al. Zinc doping induced differences in the surface composition, surface morphology and osteogenesis performance of the calcium phosphate cement hydration products[J]. Materials Science and Engineering: C, 2019, 105: 110065. [43] QIAN G W, LU T L, ZHANG J, et al. Promoting bone regeneration of calcium phosphate cement by addition of PLGA microspheres and zinc silicate via synergistic effect of in situ pore generation, bioactive ion stimulation and macrophage immunomodulation[J]. Applied Materials Today, 2020, 19: 100615. [44] LIANG W W, GAO M, LOU J S, et al. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration[J]. Journal of Materials Chemistry B, 2020, 8(15): 3038-3049. [45] BURGHARDT I, LÜTHEN F, PRINZ C, et al. A dual function of copper in designing regenerative implants[J]. Biomaterials, 2015, 44: 36-44. [46] BONNELYE E, CHABADEL A, SALTEL F, et al. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro[J]. Bone, 2008, 42(1): 129-138. [47] SCHUMACHER M, LODE A, HELTH A, et al. A novel strontium(Ⅱ)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro[J]. Acta Biomaterialia, 2013, 9(12): 9547-9557. [48] SCHUMACHER M, WAGNER A S, KOKESCH-HIMMELREICH J, et al. Strontium substitution in apatitic CaP cements effectively attenuates osteoclastic resorption but does not inhibit osteoclastogenesis[J]. Acta Biomaterialia, 2016, 37: 184-194. [49] LODE A, HEISS C, KNAPP G, et al. Strontium-modified premixed calcium phosphate cements for the therapy of osteoporotic bone defects[J]. Acta Biomaterialia, 2018, 65: 475-485. [50] DEL VALLE S, MIÑO N, MUÑOZ F, et al. In vivo evaluation of an injectable macroporous calcium phosphate cement[J]. Journal of Materials Science Materials in Medicine, 2007, 18(2): 353-361. [51] LODOSO-TORRECILLA I, VAN DEN BEUCKEN J J J P, JANSEN J A. Calcium phosphate cements: optimization toward biodegradability[J]. Acta Biomaterialia, 2021, 119: 1-12. [52] YAMAMOTO S, MATSUSHIMA Y, KANAYAMA Y, et al. Effect of the up-front heat treatment of gelatin particles dispersed in calcium phosphate cements on the in vivo material resorption and concomitant bone formation[J]. Journal of Materials Science Materials in Medicine, 2017, 28(3): 48. [53] SMITH B T, LU A, WATSON E, et al. Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration[J]. Acta Biomaterialia, 2018, 78: 341-350. [54] GROSFELD E C, SMITH B T, SANTORO M, et al. Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration[J]. Biomedical Materials (Bristol, England), 2020, 15(2): 025002. [55] MONTAZEROLGHAEM M, RASMUSSON A, MELHUS H, et al. Simvastatin-doped pre-mixed calcium phosphate cement inhibits osteoclast differentiation and resorption[J]. Journal of Materials Science Materials in Medicine, 2016, 27(5): 83. [56] 吴建煌,丁 州,雷 青,等.利福平-聚乳酸-羟基乙酸-磷酸钙骨水泥缓释复合体的实验研究[J].中南大学学报(医学版),2016,41(9):946-954. WU J H, DING Z, LEI Q, et al. An experimental study on a slow-release complex with rifampicin-polylactic-co-glycolic acid-calcium phosphate cement[J]. Journal of Central South University (Medical Science), 2016, 41(9): 946-954 (in Chinese). [57] GHOSH S, WU V, PERNAL S, et al. Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced antimicrobial applications[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 7691-7708. [58] PROKOPOWICZ M, SZEWCZYK A, SKWIRA A, et al. Biphasic composite of calcium phosphate-based mesoporous silica as a novel bone drug delivery system[J]. Drug Delivery and Translational Research, 2020, 10(2): 455-470. [59] LUCAS-APARICIO J, MANCHÓN Á, RUEDA C, et al. Silicon-calcium phosphate ceramics and silicon-calcium phosphate cements: substrates to customize the release of antibiotics according to the idiosyncrasies of the patient[J]. Materials Science and Engineering: C, 2020, 106: 110173. [60] DI FILIPPO M F, DOLCI L S, ALBERTINI B, et al. A radiopaque calcium phosphate bone cement with long-lasting antibacterial effect: from paste to injectable formulation[J]. Ceramics International, 2020, 46(8): 10048-10057. |
[1] | 梁佳丰, 郭建强, 李岳, 朱巧思, 李炯利, 王旭东. 石墨烯在水泥基材料中的作用机制研究综述[J]. 硅酸盐通报, 2021, 40(3): 704-713. |
[2] | 吴超, 杨林, 李玮, 王佳才, 曹建新, 李剑秋. 轻质抹灰磷建筑石膏性能影响机制研究[J]. 硅酸盐通报, 2021, 40(2): 565-572. |
[3] | 王雨楠, 吕卫帮. 不同加速养生方式泡沫沥青冷再生混合料宏细观结构性能研究[J]. 硅酸盐通报, 2021, 40(1): 330-339. |
[4] | 冯驸;胡超;张苏萌;刘佳衡;胡盛;周红艳;胡卫兵. 透明质酸对脱硫石膏制备高分散性α-半水石膏形貌和强度的影响[J]. 硅酸盐通报, 2020, 39(6): 1842-1847. |
[5] | 刘春英, 任国盛, 高小建. 新型复合早强剂对水泥砂浆力学性能的影响[J]. 硅酸盐通报, 2020, 39(12): 3806-3811. |
[6] | 况栋梁;焦媛;杨建波;刘宁;路再红;何锐;陈华鑫. Fe2O3/PVAc复合改性彩色水泥砂浆性能研究[J]. 硅酸盐通报, 2018, 37(12): 3732-3737. |
[7] | 林青;王鑫华;赵秋莹;张小娟;叶原丰;郝凌云. 硅酸三钙骨水泥浆体的可注射性能研究[J]. 硅酸盐通报, 2016, 35(11): 3870-3875. |
[8] | 佟钰;赵竹玉;陶冶;王晴. 水热条件下氧化镁的矿渣活性激发作用研究[J]. 硅酸盐通报, 2016, 35(10): 3139-3143. |
[9] | 佟钰;田鑫;朱长军;曾尤;牛晚杨;王晴. 短切碳纤维混凝土的力学强度实验与分析[J]. 硅酸盐通报, 2015, 34(8): 2281-2285. |
[10] | 黄斌;张毅;李东旭. 干法脱硫灰制备石膏砂浆及其性能研究[J]. 硅酸盐通报, 2013, 32(1): 1-5. |
[11] | 杨淑娥;叶建东;周子强. 磷酸铋作为磷酸钙骨水泥的显影剂及其对材料性能的影响[J]. 硅酸盐通报, 2009, 28(2): 219-223. |
[12] | 杨娟娟;叶建东. 原料粒度对磷酸钙骨水泥的流变性和可注射性的影响[J]. 硅酸盐通报, 2008, 27(2): 213-219. |
[13] | 付海罗;周萘;黄文旵;王德平. 颗粒状β-TCP对玻璃基骨水泥性能的影响[J]. 硅酸盐通报, 2007, 26(1): 33-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||