[1] LIU R, XIAO H G, LI H, et al. Effects of nano-SiO2 on the permeability-related properties of cement-based composites with different water/cement ratios[J]. Journal of Materials Science, 2018, 53(7): 4974-4986. [2] 陆春奇,谢宇晨,翁兴中,等.表面涂层混凝土防水防渗研究[J].中外公路,2018,38(1):306-308. LU C Q, XIE Y C, WENG X Z, et al. Study on waterproof and anti-seepage of surface coating concrete[J]. Journal of China & Foreign Highway, 2018, 38(1): 306-308 (in Chinese). [3] GUO W, GUO X D, WANG Z W, et al. Investigation on moisture damage prevention of a spherical hinge structure of a swivel bridge[J]. Coatings, 2020, 10(10): 955. [4] 宁逢伟,蔡跃波,白 银,等.膨胀剂和硅灰改善C50喷射混凝土抗渗性能的研究[J].硅酸盐通报,2019,38(10):3253-3259. NING F W, CAI Y B, BAI Y, et al. Research on impermeability improvement of C50 shotcrete with expansive agent and silica fume[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3253-3259 (in Chinese). [5] ALGIN Z, OZEN M. The properties of chopped basalt fibre reinforced self-compacting concrete[J]. Construction and Building Materials, 2018, 186: 678-685. [6] JIANG C H, HUANG S S, ZHU Y W, et al. Effect of polypropylene and basalt fiber on the behavior of mortars for repair applications[J]. Advances in Materials Science and Engineering, 2016, 2016: 5927609. [7] AZZAM A, BASSUONI M T, SHALABY A. Properties of high-volume fly ash and slag cementitious composites incorporating nanosilica and basalt fiber pellets[J]. Advances in Civil Engineering Materials, 2019, 8(3): 20190018. [8] 张兰芳,王道峰.玄武岩纤维掺量对混凝土耐硫酸盐腐蚀性和抗渗性的影响[J].硅酸盐通报,2018,37(6):1946-1950. ZHANG L F, WANG D F. Effect of basalt fiber content on sulfate resistance and impermeability of concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(6): 1946-1950 (in Chinese). [9] NIU D T, HUANG D G, FU Q. Experimental investigation on compressive strength and chloride permeability of fiber-reinforced concrete with basalt-polypropylene fibers[J]. Advances in Structural Engineering, 2019, 22(10): 2278-2288. [10] 陈 歆,郑秀华,韩 凯.玄武岩纤维掺杂混凝土材料特性的研究[J].深圳大学学报(理工版),2019,36(1):61-66. CHEN X, ZHENG X H, HAN K. Characterization of basalt fiber doped concrete materials[J]. Journal of Shenzhen University (Science and Engineering), 2019, 36(1): 61-66 (in Chinese). [11] XUE W P, SHEN L, JING W, et al. Permeability evolution and mechanism of thermally damaged basalt fiber-reinforced concrete under effective stress[J]. Construction and Building Materials, 2020, 251: 119077. [12] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999:38-43. WU Z W, LIAN H Z. High performance concrete[M]. Beijing: China Railway Publishing House, 1999: 38-43 (in Chinese). [13] LI Y, SHEN A Q, WU H. Fractal dimension of basalt fiber reinforced concrete (BFRC) and its correlations to pore structure, strength and shrinkage[J]. Materials (Basel, Switzerland), 2020, 13(14): 3238. [14] LI Z N, SHEN A Q, LONG H J, et al. Dynamic deterioration of strength, durability, and microstructure of pavement concrete under fatigue load[J]. Construction and Building Materials, 2021, 306: 124912. [15] 何天钦.季冻区交通荷载与冻融环境交互作用下路面水泥混凝土损伤研究[D].西安:长安大学,2017:55-57. HE T Q. Study on the damage of pavement cement concrete under the interactive effect of traffic load and freeze-thaw environment in seasonal frozen region[D]. Xi'an: Chang'an University, 2017: 55-57 (in Chinese). [16] 郭寅川,申爱琴,何天钦,等.疲劳荷载与冻融循环耦合作用下季冻区路面水泥混凝土孔结构研究[J].中国公路学报,2016,29(8):29-35. GUO Y C, SHEN A Q, HE T Q, et al. Pore structure research on pavement cement concrete subjected to coupling effect of fatigue load and cyclic freeze-thaw in seasonally frozen ground region[J]. China Journal of Highway and Transport, 2016, 29(8): 29-35 (in Chinese). [17] 赵燕茹,王 磊,韩霄峰,等.冻融条件下玄武岩纤维混凝土断裂韧度研究[J].工程力学,2017,34(9):92-101. ZHAO Y R, WANG L, HAN X F, et al. Fracture toughness of basalt-fiber reinforced concrete subjected to cyclic freezing and thawing[J]. Engineering Mechanics, 2017, 34(9): 92-101 (in Chinese). |