[1] FAN C C, WANG B M, QI Y, et al. Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders[J]. Waste Management, 2021, 131: 277-285. [2] 钱觉时,曲艳召,范云燕,等.高硫废渣特性及其在水泥中应用展望[J].硅酸盐通报,2012,31(5):1175-1180. QIAN J S, QU Y Z, FAN Y Y, et al. Characteristics of sulfate-rich residues and its application prospect in cement[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1175-1180 (in Chinese). [3] QUINA M J, BONTEMPI E, BOGUSH A, et al. Technologies for the management of MSW incineration ashes from gas cleaning: new perspectives on recovery of secondary raw materials and circular economy[J]. Science of the Total Environment, 2018, 635: 526-542. [4] LI J T, ZENG M, JI W X. Characteristics of the cement-solidified municipal solid waste incineration fly ash[J]. Environmental Science and Pollution Research, 2018, 25(36): 36736-36744. [5] TANG Q, LIU Y, GU F, et al. Solidification/stabilization of fly ash from a municipal solid waste incineration facility using Portland cement[J]. Advances in Materials Science and Engineering, 2016, 2016: 1-10. [6] LUAN J D, CHAI M Y, LI R D, et al. The mineral phase evolution behaviour in the production of glass-ceramics from municipal solid waste incineration fly ash by melting technology[J]. Environmental Technology, 2016, 37(8): 1036-1044. [7] XUE Y, LIU X M. Detoxification, solidification and recycling of municipal solid waste incineration fly ash: a review[J]. Chemical Engineering Journal, 2021, 420: 130349. [8] 钱春香,王安辉,王 欣.微生物灌浆加固土体研究进展[J].岩土力学,2015,36(6):1537-1548. QIAN C X, WANG A H, WANG X. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548 (in Chinese). [9] 徐 晶,王彬彬.陶粒负载微生物的混凝土开裂自修复研究[J].材料导报,2017,31(14):127-131. XU J, WANG B B. Research on self-healing of concrete cracks by ceramsite immobilized microorganism[J]. Materials Review, 2017, 31(14): 127-131 (in Chinese). [10] WANG J Y, VANDEVYVERE B, VANHESSCHE S, et al. Microbial carbonate precipitation for the improvement of quality of recycled aggregates[J]. Journal of Cleaner Production, 2017, 156: 355-366. [11] WILLIAMS S L, KIRISITS M J, FERRON R D. Optimization of growth medium for Sporosarcina pasteurii in bio-based cement pastes to mitigate delay in hydration kinetics[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(4): 567-575. [12] 李 珠,冯 涛,周梦君,等.基于科式芽孢杆菌矿化沉积的混凝土裂缝自修复性能试验研究[J].混凝土,2017(6):5-8. LI Z, FENG T, ZHOU M J, et al. Experimental study on self-healing performance of concrete cracks based on mineralization of Bacillus cohnii[J]. Concrete, 2017(6): 5-8 (in Chinese). [13] ZHANG J G, LIU Y Z, FENG T, et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete[J]. Construction and Building Materials, 2017, 148: 610-617. [14] KHADIM H J, AMMAR S H, EBRAHIM S E. Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses soil[J]. Environmental Technology & Innovation, 2019, 14: 100315. [15] KANG C H, HAN S H, SHIN Y, et al. Bioremediation of Cd by microbially induced calcite precipitation[J]. Applied Biochemistry and Biotechnology, 2014, 172(6): 2907-2915. [16] 钱春香,王明明,许燕波.土壤重金属污染现状及微生物修复技术研究进展[J].东南大学学报(自然科学版),2013,43(3):669-674. QIAN C X, WANG M M, XU Y B. Current situation of soil contamination by heavy metals and research progress in bio-remediation technique[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(3): 669-674 (in Chinese). [17] 成 亮,钱春香,王瑞兴,等.碳酸盐矿化菌株A固结土壤Cd2+的生物矿化过程[J].硅酸盐学报,2008,36(s1):215-221. CHENG L, QIAN C X, WANG R X, et al. Bioremediation process of Cd2+ removal from soil by bacteria A biomineralization[J]. Journal of the Chinese Ceramic Society, 2008, 36(s1): 215-221 (in Chinese). [18] CHEN P, ZHENG H, XU H, et al. Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity[J]. PLoS One, 2019, 14(10): e0223900. [19] 颜可珍,郑凯高,胡迎斌.城市生活垃圾焚烧飞灰在沥青胶浆中的应用[J].铁道科学与工程学报,2018,15(10):2509-2517. YAN K Z, ZHENG K G, HU Y B. Application of municipal solid waste incinerator ash in asphalt mortar[J]. Journal of Railway Science and Engineering, 2018, 15(10): 2509-2517 (in Chinese). [20] 金漫彤,董海丽,楼敏晓,等.土壤聚合物固化飞灰与水泥固化的比较研究[J].硅酸盐通报,2008,27(5):904-908. JIN M T, DONG H L, LOU M X, et al. Research into the comparison between geopolymer solidification fly ash and cement solidification fly ash[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(5): 904-908 (in Chinese). [21] CHEN Z L, LU S Y, TANG M H, et al. Mechanical activation of fly ash from MSWI for utilization in cementitious materials[J]. Waste Management, 2019, 88: 182-190. [22] XU P, ZHAO Q L, QIU W, et al. Microstructure and strength of alkali-activated bricks containing municipal solid waste incineration (MSWI) fly ash developed as construction materials[J]. Sustainability, 2019, 11(5): 1283. [23] 耿永娟,李绍纯,李秋义,等.利用固体废弃物制备硫铝酸盐水泥的研究进展[J].硅酸盐通报,2013,32(11):2268-2273. GENG Y J, LI S C, LI Q Y, et al. Research progress of the sulphoaluminate cement prepared with solid wastes as raw materials[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(11): 2268-2273 (in Chinese). [24] 高炎旭.微生物诱导碳酸盐沉淀(MICP)团聚化垃圾焚烧飞灰试验研究[D].杭州:浙江理工大学,2017. GAO Y X. Experimental study on aggregation of municipal solid waste incineration fly ash based on microbial induced carbonate precipitation[D]. Hangzhou: Zhejiang Sci-Tech University, 2017 (in Chinese). [25] 荣 辉,魏冠奇,张 磊,等.微生物胶凝材料固结垃圾焚烧飞灰效果及机制[J].材料导报,2019,33(22):3757-3761+3767. RONG H, WEI G Q, ZHANG L, et al. Consolidation of municipal solid waste incineration fly ash by microbial cementing material: effect and mechanism[J]. Materials Reports, 2019, 33(22): 3757-3761+3767 (in Chinese). [26] 郝小虎,张家广,李 珠,等.钙离子对微生物矿化改性再生骨料性能的影响研究[J].新型建筑材料,2019,46(9):84-87. HAO X H, ZHANG J G, LI Z, et al. Study on the effect of calcium ion on the performance of microbial mineralized modified recycled aggregate[J]. New Building Materials, 2019, 46(9): 84-87 (in Chinese). |