[1] SAMEERA J N, JHUMA F A, RASHID M J. Numerical approach to optimizing the doping concentration of the absorber layer to enhance the performance of a CdTe solar cell[J]. Semiconductor Science and Technology, 2020, 36(1): 015022. [2] GUO X Z, TAN Q X, LIU S W, et al. High-efficiency solution-processed CdTe nanocrystal solar cells incorporating a novel crosslinkable conjugated polymer as the hole transport layer[J]. Nano Energy, 2018, 46: 150-157. [3] XIA Y S, ZHU C Q. Interaction of CdTe nanocrystals with thiol-containing amino acids at different pH: a fluorimetric study[J]. Microchimica Acta, 2009, 164(1/2): 29-34. [4] YU L R, LI L, DING Y P, et al. A fluorescent switch sensor for glutathione detection based on Mn-doped CdTe quantum dots-methyl viologen nanohybrids[J]. Journal of Fluorescence, 2016, 26(2): 651-660. [5] QIU X Y, JIAO X J, LIU C, et al. A selective and sensitive fluorescent probe for homocysteine and its application in living cells[J]. Dyes and Pigments, 2017, 140: 212-221. [6] XU S, ZHOU J L, DONG X C, et al. Fluorescent probe for sensitive discrimination of Hcy and Cys/GSH in living cells via dual-emission[J]. Analytica Chimica Acta, 2019, 1074: 123-130. [7] YIN C X, XIONG K M, HUO F J, et al. Fluorescent probes with multiple binding sites for the discrimination of Cys, Hcy, and GSH[J]. Angewandte Chemie International Edition, 2017, 56(43): 13188-13198. [8] WANG W G, MA J, WANG M X, et al. Characterization of anatase TiO2 epitaxial films deposited on YSZ(100) substrates by metal-organic chemical vapor deposition[J]. Materials Letters, 2015, 161: 9-12. [9] CHEN Y D, WANG J, LIU C, et al. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application[J]. Nanoscale, 2016, 8(19): 10059-10065. [10] WANG L, MA X, CHEN R, et al. Ultraviolet nano-photodetector based on ZnS:Cl nanoribbon/Au Schottky junctions[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(6): 4290-4297. [11] SAGDEEV D O, SHAMILOV R R, VORONKOVA V K, et al. Lanthanide-doped CdS quantum dots: luminescence and paramagnetic properties[J]. Russian Chemical Bulletin, 2020, 69(9): 1749-1754. [12] CHEN L, LIN J W, YI J Q, et al. A tyrosinase-induced fluorescence immunoassay for detection of tau protein using dopamine-functionalized CuInS2/ZnS quantum dots[J]. Analytical and Bioanalytical Chemistry, 2019, 411(20): 5277-5285. [13] ZELNER M, MINTI H, REISFELD R, et al. Preparation and characterization of CdTe nanoparticles in zirconia films prepared by the sol gel method[J]. Journal of Sol-Gel Science and Technology, 2001, 20(2): 153-160. [14] LEI Y, JIANG C Y, LIU S J, et al. A clean route for preparation of CdTe nanocrystals and their conjugation with bacterium[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(12): 3784-3788. [15] 何功明,叶金文,刘 颖,等.碲化镉粉的液相还原与氢处理法制备研究[J].功能材料,2013,44(18):2650-2653. HE G M, YE J W, LIU Y, et al. Study on the preparation of cadmium telluride powder by liquid-phase reduction and hydrogen treatment[J]. Journal of Functional Materials, 2013, 44(18): 2650-2653 (in Chinese). [16] 刘 远,郑雅杰,孙召明.共沉淀-氢气还原法制备碲化镉粉末[J].中国有色金属学报,2015,25(5):1294-1299. LIU Y, ZHENG Y J, SUN Z M. CdTe powder prepared by coprecipitation-hydrogen reduction method[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(5): 1294-1299 (in Chinese). [17] XU W W, TIAN G M, MA X H, et al. Universal ion exchange method for flowerlike metal telluride (PbTe, CdTe, Sb2Te3, Bi2Te3, and Cu7Te4) microstructures by using β-ZnTe(en)0.5 as templates[J]. Micro & Nano Letters, 2019, 14(1): 99-102. [18] HOPPE K, GEIDEL E, WELLER H, et al. Covalently bound CdTe nanocrystals[J]. Physical Chemistry Chemical Physics, 2002, 4(10): 1704-1706. [19] YU X Y, LEI B X, KUANG D B, et al. Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition[J]. Chemical Science, 2011, 2(7): 1396. [20] POLMAN A, KNIGHT M, GARNETT E C, et al. Photovoltaic materials: present efficiencies and future challenges[J]. Science, 2016, 352(6283): 4424. [21] BIAN L, NIE J N, DONG H L, et al. Self-assembly of water-soluble glutathione thiol-capped n-hematite-p-XZn-ferrites (X=Mg, Mn, or Ni): experiment and theory[J]. The Journal of Physical Chemistry C, 2017, 121(43): 24046-24059. [22] XU H, HEPEL M. “Molecular beacon”-based fluorescent assay for selective detection of glutathione and cysteine[J]. Analytical Chemistry, 2011, 83(3): 813-819. [23] GARAI-IBABE G, SAA L, PAVLOV V. Enzymatic product-mediated stabilization of CdS quantum dots produced in situ: application for detection of reduced glutathione, NADPH, and glutathione reductase activity[J]. Analytical Chemistry, 2013, 85(11): 5542-5546. [24] CHANG L F, HE X W, CHEN L X, et al. A novel fluorescent turn-on biosensor based on QDs@GSH-GO fluorescence resonance energy transfer for sensitive glutathione S-transferase sensing and cellular imaging[J]. Nanoscale, 2017, 9(11): 3881-3888. |