[1] 李 静,温鹏飞,何振嘉.煤矸石的危害性及综合利用的研究进展[J].煤矿机械,2017,38(11):128-130.
LI J, WEN P F, HE Z J. Research progress harmfulness and comprehensive utilization of coal gangue[J]. Coal Mine Machinery, 2017, 38(11): 128-130 (in Chinese).
[2] HOU B W, QIU J S, GUO P, et al. Freezing-thawing damage mechanism of coal gangue concrete based on low-field nuclear magnetic resonance, scanning electron microscopy, and N2 adsorption[J]. Advances in Civil Engineering, 2021(2021): 1-11.
[3] 金立兵,王 珍,王振清,等.混凝土中氯离子渗透的试验与细观数值分析[J].土木与环境工程学报(中英文),2020,42(6):127-133.
JIN L B, WANG Z, WANG Z Q, et al. Experiment and mesoscopic numerical analysis of chloridion penetration in concrete[J]. Journal of Civil and Environmental Engineering, 2020, 42(6): 127-133 (in Chinese).
[4] 张立明,余红发,何忠茂.盐湖地区混凝土的氯离子扩散性[J].中南大学学报(自然科学版),2011,42(6):1752-1755.
ZHANG L M, YU H F, HE Z M. Chloride ion diffusivity of salt lake concrete[J]. Journal of Central South University (Science and Technology), 2011, 42(6): 1752-1755 (in Chinese).
[5] 王 晴,刘 锁,王继博,等.煤矸石粗集料混凝土抗氯离子渗透性能的研究[J].混凝土,2016(8):36-38.
WANG Q, LIU S, WANG J B, et al. Research on resistance to chloride ion of the coal gangue coarse aggregate concrete[J]. Concrete, 2016(8): 36-38 (in Chinese).
[6] 马宏强,易 成,朱红光,等.煤矸石集料混凝土抗压强度及耐久性能[J].材料导报,2018,32(14):2390-2395.
MA H Q, YI C, ZHU H G, et al. Compressive strength and durability of coal gangue aggregate concrete[J]. Materials Review, 2018, 32(14): 2390-2395 (in Chinese).
[7] SAKAI Y Y. Relationship between pore structure and chloride diffusion in cementitious materials[J]. Construction and Building Materials, 2019, 229: 116868.
[8] CHANG H L, ZUO Z W, QU M Y, et al. Influence of pore structure on chloride penetration in cement pastes subject to wetting-drying cycles[J]. Advances in Materials Science and Engineering, 2019(2019): 1-10.
[9] ZHANG J Z, WU J, ZHANG Y R, et al. Time-varying relationship between pore structures and chloride diffusivity of concrete under the simulated tidal environment[J]. European Journal of Environmental and Civil Engineering, 2019: 1-18.
[10] 顾 云,张 彬.煤矸石集料混凝土工作与力学性能研究[J].混凝土,2019(7):71-73.
GU Y, ZHANG B. Research of working and mechanical properties of coal gangue aggregate concrete[J]. Concrete, 2019(7): 71-73 (in Chinese).
[11] 关 虓,邱继生,潘 杜,等.冻融环境下煤矸石混凝土损伤度评估方法研究[J].材料导报,2018,32(20):3546-3552.
GUAN X, QIU J S, PAN D, et al. Research on the evaluation method of damage degree of coal gangue concrete under freezing-thawing[J]. Materials Review, 2018, 32(20): 3546-3552 (in Chinese).
[12] 李少伟,周 梅,张莉敏.自燃煤矸石粗骨料特性及其对混凝土性能的影响[J].建筑材料学报,2020,23(2):334-340+380.
LI S W, ZHOU M, ZHANG L M. Properties of spontaneous combustion coal gangue coarse aggregate and its influence on concrete[J]. Journal of Building Materials, 2020, 23(2): 334-340+380 (in Chinese).
[13] 王元战,吕彦伟,龙俞辰,等.粗骨料对混凝土界面过渡区氯离子扩散性能影响[J].海洋工程,2018,36(2):73-82.
WANG Y Z, LYU Y W, LONG Y C, et al. Effect of coarse aggregate on chloride diffusion properties in the interfacial transition zone of concrete[J]. The Ocean Engineering, 2018, 36(2): 73-82 (in Chinese).
[14] 曹杰荣.海洋环境下混凝土表层氯离子浓度分布及时变规律[D].青岛:青岛理工大学,2018.
CAO J R. Chloride ion concentration distribution and evolution in concrete surface exposed to marine environment[D]. Qingdao: Qingdao Tehcnology University, 2018 (in Chinese).
[15] 宋鲁光,孙 伟,高建明.干湿循环条件下矿渣混凝土氯离子表观扩散系数的影响因素研究[J].混凝土,2015(11):4-6+11.
SONG L G, SUN W, GAO J M. Factors influencing chloride apparent diffusion coefficient in GGBS concrete in wetting-drying cycles[J]. Concrete, 2015(11): 4-6+11 (in Chinese).
[16] 张 鹏,庄智杰,鲍玖文,等.人工模拟海洋潮汐区应变硬化水泥基复合材料抗氯盐侵蚀性能[J].建筑材料学报,2021,24(1):1-6+21.
ZHANG P, ZHUANG Z J, BAO J W, et al. Chloride resistance of strain hardening cementitious composites under the artificially simulated marine tidal zone[J]. Journal of Building Materials, 2021, 24(1): 1-6+21 (in Chinese).
[17] ZHANG Y, ZHOU X Y, WANG M, et al. Differences between time-dependent instantaneous and apparent chloride diffusion coefficients of concrete in tidal environment[J]. Journal of Materials in Civil Engineering, 2021, 33(2): 04020466.
[18] 高延红,周晓芸,吕 萌,等.自然潮差下粉煤灰混凝土氯离子扩散性能时变性[J].水力发电学报,2019,38(10):14-23.
GAO Y H, ZHOU X Y, L M, et al. Time-dependent chloride diffusivity of fly ash concrete in marine tidal environment[J]. Journal of Hydroelectric Engineering, 2019, 38(10): 14-23 (in Chinese).
[19] STANISH K, THOMAS M. The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients[J]. Cement and Concrete Research, 2003, 33(1): 55-62.
[20] HUANG D G, NIU D T, SU L, et al. Chloride diffusion behavior of coral aggregate concrete under drying-wetting cycles[J]. Construction and Building Materials, 2021, 270: 121485.
[21] 王家滨,牛荻涛,袁 斌.冻融损伤喷射混凝土本构关系及微观结构[J].土木建筑与环境工程,2016,38(1):30-39.
WANG J B, NIU D T, YUAN B. Constitutive relation and microstructure on shotcrete after freeze and thaw damage[J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(1): 30-39 (in Chinese).
[22] 李永鑫,陈益民,贺行洋,等.粉煤灰-水泥浆体的孔体积分形维数及其与孔结构和强度的关系[J].硅酸盐学报,2003,31(8):774-779.
LI Y X, CHEN Y M, HE X Y, et al. Pore volume fractal dimension of fly ash-cement paste and its relationship between the pore structure and strength[J]. Journal of the Chinese Ceramic Society, 2003, 31(8): 774-779 (in Chinese).
[23] ZHANG B Q, LIU W, LIU X F. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry[J]. Applied Surface Science, 2006, 253(3): 1349-1355.
[24] 张建波,文俊强,王宏霞,等.混凝土孔体积分形维数及其与氯离子渗透性和强度的关系[J].混凝土,2010(5):7-9.
ZHANG J B, WEN J Q, WANG H X, et al. Pore volume fractal dimension of concrete and its relationship between chloride diffusivity and strength[J]. Concrete, 2010(5): 7-9 (in Chinese). |